Note on the spectral radius of alternating sign matrices

被引:3
|
作者
Brualdi, Richard A. [1 ]
Cooper, Joshua [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Alternating sign matrix; ASM; Spectral radius;
D O I
10.1016/j.laa.2013.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the n x n so-called diamond alternating sign matrix D-n is the unique n x n alternating sign matrix with maximum spectral radius rho(n), and that lim(n ->infinity) rho(n)/n = 2/pi (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [1] NOTE ON SPECTRAL RADIUS OF CERTAIN MATRICES
    STROM, T
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (01): : 51 - 52
  • [2] A NOTE ON THE SPECTRAL RADIUS OF A PRODUCT OF COMPANION MATRICES
    Key, E. S.
    Volkmer, H.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 879 - 881
  • [3] A Note on Bounds for the Spectral Radius of BrualdiLi Matrices
    Chen, Xiaogen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 491 - 498
  • [4] The rotor model with spectral parameters and enumerations of alternating sign matrices
    Cantini, Luigi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [5] Alternating Sign Matrices and Polynomiography
    Kalantari, Bahman
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (02):
  • [6] Completions of Alternating Sign Matrices
    Richard A. Brualdi
    Hwa Kyung Kim
    Graphs and Combinatorics, 2015, 31 : 507 - 522
  • [7] Patterns of alternating sign matrices
    Brualdi, Richard A.
    Kiernan, Kathleen P.
    Meyer, Seth A.
    Schroeder, Michael W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3967 - 3990
  • [8] Alternating sign matrices and tournaments
    Chapman, R
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 318 - 335
  • [9] ALTERNATING-SIGN MATRICES
    BOUSQUETMELOU, M
    HABSIEGER, L
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 57 - 72
  • [10] DETERMINANTS AND ALTERNATING SIGN MATRICES
    ROBBINS, DP
    RUMSEY, H
    ADVANCES IN MATHEMATICS, 1986, 62 (02) : 169 - 184