Rational design of materials interface at nanoscale towards intelligent oil-water separation

被引:290
|
作者
Ge, Mingzheng [1 ]
Cao, Chunyan [1 ]
Huang, Jianying [1 ,2 ]
Zhang, Xinnan [1 ]
Tang, Yuxin [3 ]
Zhou, Xinran [3 ]
Zhang, Keqin [1 ,2 ]
Chen, Zhong [3 ]
Lai, Yuekun [1 ,2 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[2] Soochow Univ, Res Ctr Cooperat Innovat Funct Organ Polymer Mat, Suzhou 215123, Jiangsu, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
SELF-ASSEMBLY PROCESS; ON-DEMAND SEPARATION; COATED COPPER-MESH; IN-SITU GROWTH; ONE-STEP SPRAY; HIGHLY EFFICIENT; OIL/WATER SEPARATION; CARBON NANOTUBE; UNDERWATER SUPEROLEOPHOBICITY; SUPERHYDROPHOBIC SURFACE;
D O I
10.1039/c7nh00185a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil-water separation is critical for the water treatment of oily wastewater or oil-spill accidents. The oil contamination in water not only induces severe water pollution but also threatens human beings' health and all living species in the ecological system. To address this challenge, different nanoscale fabrication methods have been applied for endowing biomimetic porous materials, which provide a promising solution for oily-water remediation. In this review, we present the state-of-the-art developments in the rational design of materials interface with special wettability for the intelligent separation of immiscible/ emulsified oil-water mixtures. A mechanistic understanding of oil-water separation is firstly described, followed by a summary of separation solutions for traditional oil-water mixtures and special oil-water emulsions enabled by self-amplified wettability due to nanostructures. Guided by the basic theory, the rational design of interfaces of various porous materials at nanoscale with special wettability towards superhydrophobicity-superoleophilicity, superhydrophilicity-superoleophobicity, and superhydrophilicityunderwater superoleophobicity is discussed in detail. Although the above nanoscale fabrication strategies are able to address most of the current challenges, intelligent superwetting materials developed to meet special oil-water separation demands and to further promote the separation efficiency are also reviewed for various special application demands. Finally, challenges and future perspectives in the development of more efficient oil-water separation materials and devices by nanoscale control are provided. It is expected that the biomimetic porous materials with nanoscale interface engineering will overcome the current challenges of oil-water emulsion separation, realizing their practical applications in the near future with continuous efforts in this field.
引用
收藏
页码:235 / 260
页数:26
相关论文
共 50 条
  • [1] Nanoscale Structure of the Oil-Water Interface
    Fukuto, M.
    Ocko, B. M.
    Bonthuis, D. J.
    Netz, R. R.
    Steinruck, H. -G.
    Pontoni, D.
    Kuzmenko, I.
    Haddad, J.
    Deutsch, M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (25)
  • [2] Foamed materials for oil-water separation
    Udayakumar, Kavitha Vellopollath
    Gore, Prakash M.
    Kandasubramanian, Balasubramanian
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2021, 5
  • [3] Intelligent Coatings with Controlled Wettability for Oil-Water Separation
    Fan, Shumin
    Li, Yunxiang
    Wang, Rujun
    Ma, Wenwen
    Shi, Yipei
    Fan, Wenxiu
    Zhuo, Kelei
    Xu, Guangri
    NANOMATERIALS, 2022, 12 (18)
  • [4] A review on hydrophobic materials in oil-water separation
    Zhang, Xunan
    Liu, Wenjie
    Gao, Bixue
    Zong, Wei
    MICROCHEMICAL JOURNAL, 2025, 212
  • [5] Superwetting Materials of Oil-Water Emulsion Separation
    Si, Yifan
    Guo, Zhiguang
    CHEMISTRY LETTERS, 2015, 44 (07) : 874 - 883
  • [6] OIL-WATER SEPARATION USING FIBROUS MATERIALS
    CHAMBERS, DB
    CHEMISTRY & INDUSTRY, 1978, (21) : 834 - 837
  • [7] Rational design of electrospun nanofibrous materials for oil/water emulsion separation
    Zhang, Jichao
    Liu, Lifang
    Si, Yang
    Yu, Jianyong
    Ding, Bin
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (01) : 97 - 128
  • [8] Oil-water interface: Mapping nanoscale solvation and fluidity.
    Cowin, JP
    Iedema, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U234 - U234
  • [9] Superhydrophobic/superlipophilic interface layer for oil-water separation
    Xiao, Fei
    Zhang, Hongxia
    Wu, Tianzhao
    Liu, Jiahao
    Liu, Jianxin
    Zhang, Jiangbo
    Liu, Wei
    Liang, Taixin
    Hu, Jinghui
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 : 13 - 21
  • [10] Advances in Highly Selective Materials for the Separation of Oil-Water
    Uhm, Sunghyun
    Choi, Kwang-Soon
    Lee, Donghun
    APPLIED CHEMISTRY FOR ENGINEERING, 2019, 30 (02): : 141 - 144