Structural, elastic and electronic properties of new layered superconductor HfCuGe2 in comparison with isostructural HfCuSi2, ZrCuGe2, and ZrCuSi2 from first-principles calculations

被引:6
|
作者
Shein, I. R. [1 ]
Skornyakov, S. L. [2 ,3 ]
Anisimov, V. I. [2 ,3 ]
Ivanovskii, A. L. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Solid State Chem, Ekaterinburg 620990, Russia
[2] Russian Acad Sci, Ural Branch, Inst Met Phys, Ekaterinburg 620041, Russia
[3] Ural Fed Univ, Ekaterinburg, Russia
关键词
Intermetallics; Electronic structure of metals and alloys; Elastic properties; Ab-initio calculations; HIGH-TEMPERATURE SUPERCONDUCTIVITY; 1ST PRINCIPLES; BAND-STRUCTURE; PHASES; DIBORIDES; ARSENIDES; SEARCH; METALS;
D O I
10.1016/j.intermet.2013.06.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Very recently, low-temperature superconductivity was discovered for the intermetallic compound HfCuGe2 (2013; Cava RJ, et al, EPL 101:67001.), which was declared as "a non-magnetic analog of the 1111 iron pnictides". Herein, by means of the first-principles calculations, we have examined in detail the structural, elastic, and electronic properties of HfCuGe2, as well as of the isostructural and isoelectronic phases ZrCuGe2, HfCuSi2, and ZrCuSi2, which are analyzed in comparison with a set of 1111-like phases. The obtained close similarity of the electronic factors, namely, the topologies of the near-Fermi bands, the Fermi surfaces, as well as the DOS values at the Fermi level for superconducting HfCuGe2 and other examined 112 phases allowed us to assume that low-temperature superconductivity may be expected also for ZrCuGe2, HfCuSi2, and ZrCuSi2. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 50 条
  • [1] STRUCTURE OF COMPOUNDS HFCUSI2, HFCUGE2, ZRCUSI2 AND ZRCUGE2
    ANDRUKHIV, LS
    LISENKO, LO
    YARMOLYUK, YP
    GLADISHEVSKII, EI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (07): : 645 - 648
  • [2] Structural, elastic, electronic and magnetic properties of ThCr2Si2 from first-principles calculations
    Shein, I. R.
    Ivanovskii, A. L.
    SOLID STATE COMMUNICATIONS, 2011, 151 (17) : 1165 - 1168
  • [3] Elastic and electronic properties of ScMn2 from first-principles calculations
    Wu, Meng-Meng
    Tang, Bi-Yu
    Peng, Li-Ming
    Ding, Wen-Jing
    PHYSICA B-CONDENSED MATTER, 2010, 405 (23) : 4812 - 4817
  • [4] Structural, elastic, and electronic properties ofMgB2C2under pressure from first-principles calculations
    Liu, Lili
    Wang, Miao
    Hu, Lei
    Wen, Yufeng
    Jiang, Youchang
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (02)
  • [5] First-principles calculations of structural, electronic and elastic properties of Ca2MgSi2O7
    Yang, Yang
    Lu, Hao
    Yu, Chun
    Chen, Jun-Mei
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (01) : 35 - 40
  • [6] Structural and elastic properties of WSe2: first-principles calculations
    Li, Jihong
    Jia, Liping
    Zheng, Xingrong
    Peng, Changning
    Fu, Xijing
    2020 3RD INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY (CISAT) 2020, 2020, 1634
  • [7] First-principles calculations of structural, electronic, and elastic properties of MgZrSi2O7
    Brik, M. G.
    Srivastava, A. M.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (01) : 6 - 9
  • [8] Structural, Electronic, Elastic and Thermal Properties of Li2AgSb: First-Principles Calculations
    Li, Ji-Hong
    Zhu, Xu-Hui
    Cheng, Yan
    Ji, Guang-Fu
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (08): : 611 - 618
  • [9] First-principles calculations of the structural, electronic, optical and elastic properties of the CuYS2 semiconductor
    Brik, M. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (34)
  • [10] Electronic, magnetic and elastic properties of Mo2FeB2: First-principles calculations
    Wang, Bin
    Liu, Ying
    Ye, Jin-Wen
    Wang, Jie
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 70 : 133 - 139