Special volume on saddle point problems: Numerical solution and applications

被引:0
|
作者
Benzi, M
Lehoucq, RB
de Sturler, E
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:vi / vi
页数:1
相关论文
共 50 条
  • [1] Special volume on saddle point problems: Numerical solution and applications
    Benzi, Michele
    Lehoucq, Richard B.
    De Sturler, Eric
    Electronic Transactions on Numerical Analysis, 2006, 22
  • [2] On the numerical analysis of nonlinear twofold saddle point problems
    Gatica, GN
    Heuer, N
    Meddahi, S
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (02) : 301 - 330
  • [3] An efficient numerical method for preconditioned saddle point problems
    Li, Dongping
    Zhao, Jingyu
    Zhang, Guofeng
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5596 - 5602
  • [4] EXISTENCE AND UNIT THEOREMS AND NUMERICAL APPROXIMATION FOR SADDLE POINT PROBLEMS
    BREZZI, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (12): : 839 - 842
  • [5] Updating QR factorization technique for solution of saddle point problems
    Zeb, Salman
    Yousaf, Muhammad
    Khan, Aziz
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2023, 8 (01): : 1672 - 1681
  • [6] LIMIT MODIFICATIONS IN OPTIMIZATION AND THEIR APPLICATIONS TO SADDLE-POINT PROBLEMS
    PRASAD, S
    MUKHERJEE, RN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (02): : 130 - 137
  • [7] Minimax theorems for subconvexlike functions with applications to saddle point problems
    Liu, XZ
    Hu, SH
    Liu, JS
    ACTA MATHEMATICA SCIENTIA, 2002, 22 (01) : 115 - 122
  • [8] MINIMAX THEOREMS FOR SUBCONVEXLIKE FUNCTIONS WITH APPLICATIONS TO SADDLE POINT PROBLEMS
    刘先忠
    胡适耕
    刘金山
    Acta Mathematica Scientia, 2002, (01) : 115 - 122
  • [9] ROBUST PRECONDITIONERS FOR MULTIPLE SADDLE POINT PROBLEMS AND APPLICATIONS TO OPTIMAL CONTROL PROBLEMS
    Beigl, Alexander
    Sogn, Jarle
    Zulehner, Walter
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1590 - 1615
  • [10] Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems
    Department of Modelling of Processes, Technical University of Liberec, Hálkova 6, CZ-461 17 Liberec, Czech Republic
    不详
    J. Comput. Appl. Math., 2008, 1 (28-37):