Possibilistic Information Fusion Using Maximal Coherent Subsets

被引:33
|
作者
Destercke, Sebastien [1 ,2 ]
Dubois, Didier [1 ,2 ]
Chojnacki, Eric [3 ]
机构
[1] CNRS, IRIT, F-31062 Toulouse, France
[2] Univ Toulouse, F-31062 Toulouse, France
[3] Inst Radioprotect & Surete Nucl, Cadarache, France
关键词
Fuzzy belief functions; fuzzy sets; information fusion; maximal coherent subsets (MCSs); possibility theory; BELIEF; PROBABILITIES; COMBINATION;
D O I
10.1109/TFUZZ.2008.2005731
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When multiple sources provide information about the same unknown quantity, their fusion into a synthetic interpretable message is often a tricky problem, especially when sources are conflicting. In this paper, we propose to use possibility theory and the notion of maximal coherent subsets (MCSs), often used in logic-based representations, to build a fuzzy belief structure that will be instrumental both for extracting useful insight about various features of the information conveyed by the sources and for compressing this information into a unique possibility distribution. Extensions and properties of the basic fusion rule are also studied.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [1] Possibilistic information fusion using maximal coherent subsets
    Destercke, Sebastien
    Dubois, Didier
    Chojnacki, Eric
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 444 - +
  • [2] Fusion of multi-dimensional possibilistic information via possibilistic linear programming
    Guo, PJ
    Entani, T
    Tanaka, H
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2001, 44 (03) : 220 - 229
  • [3] A Possibilistic Information Fusion-Based Unsupervised Feature Selection Method Using Information Quality Measures
    Zhang, Pengfei
    Li, Tianrui
    Yuan, Zhong
    Deng, Zhixuan
    Wang, Guoqiang
    Wang, Dexian
    Zhang, Fan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (09) : 2975 - 2988
  • [4] Revealing functionally coherent subsets using a spectral clustering and an information integration approach
    Richards, Adam J.
    Schwacke, John H.
    Rohrer, Baerbel
    Cowart, L. Ashley
    Lu, Xinghua
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [5] Cooperative localization using possibilistic sensor fusion
    Bison, P
    Chemello, G
    Sossai, C
    Trainito, G
    INTELLIGENT AUTONOMOUS VECHICLES 1998 (IAV'98), 1998, : 177 - 182
  • [6] Possibilistic Merging and Distance-Based Fusion of Propositional Information
    Salem Benferhat
    Didier Dubois
    Souhila Kaci
    Henri Prade
    Annals of Mathematics and Artificial Intelligence, 2002, 34 : 217 - 252
  • [7] Possibilistic merging and distance-based fusion of propositional information
    Benferhat, S
    Dubois, D
    Kaci, S
    Prade, H
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 34 (1-3) : 217 - 252
  • [8] Maximal flow in possibilistic networks
    Soleimani-damaneh, M.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 370 - 375
  • [9] Combining Imprecise Probability Masses with Maximal Coherent Subsets: Application to Ensemble Classification
    Destercke, Sebastien
    Antoine, Violaine
    SYNERGIES OF SOFT COMPUTING AND STATISTICS FOR INTELLIGENT DATA ANALYSIS, 2013, 190 : 27 - +
  • [10] Multi-dimensional Maximal Coherent Subsets Made Easy: Illustration on an Estimation Problem
    Adam, Loic
    Destercke, Sebastien
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 1 - 8