Simplicity of eigenvalues in Anderson-type models

被引:12
|
作者
Naboko, Sergey [1 ]
Nichols, Roger [2 ]
Stolz, Guenter [3 ]
机构
[1] St Petersburg State Univ, Dept Math Phys, Inst Phys, St Petersburg 198504, Russia
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
ARKIV FOR MATEMATIK | 2013年 / 51卷 / 01期
关键词
SPECTRUM;
D O I
10.1007/s11512-011-0155-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show almost sure simplicity of eigenvalues for several models of Anderson-type random Schrodinger operators, extending methods introduced by Simon for the discrete Anderson model. These methods work throughout the spectrum and are not restricted to the localization regime. We establish general criteria for the simplicity of eigenvalues which can be interpreted as separately excluding the absence of local and global symmetries, respectively. The criteria are applied to Anderson models with matrix-valued potential as well as with single-site potentials supported on a finite box.
引用
收藏
页码:157 / 183
页数:27
相关论文
共 50 条
  • [1] Simplicity of singular spectrum in Anderson-type Hamiltonians
    Jaksic, V
    Last, Y
    DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) : 185 - 204
  • [2] Simplicity of Eigenvalues in the Anderson Model
    Abel Klein
    Stanislav Molchanov
    Journal of Statistical Physics, 2006, 122 (1) : 95 - 99
  • [3] Simplicity of Eigenvalues in the Anderson Model
    Klein, Abel
    Molchanov, Stanislav
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (01) : 95 - 99
  • [4] Spectral and Dynamical Contrast on Highly Correlated Anderson-Type Models
    Rodrigo Matos
    Rajinder Mavi
    Jeffrey Schenker
    Annales Henri Poincaré, 2024, 25 : 1445 - 1483
  • [5] Spectral and Dynamical Contrast on Highly Correlated Anderson-Type Models
    Matos, Rodrigo
    Mavi, Rajinder
    Schenker, Jeffrey
    ANNALES HENRI POINCARE, 2024, 25 (02): : 1445 - 1483
  • [6] ANDERSON-TYPE AMMONIUM HEXAMOLYBDOTUNGSTONICKELATES
    PORTA, P
    MINELLI, G
    MORETTI, G
    PETTITI, I
    BOTTO, LI
    THOMAS, HJ
    JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (04) : 541 - 545
  • [7] POSITIVITY OF LYAPUNOV EXPONENTS FOR ANDERSON-TYPE MODELS ON TWO COUPLED STRINGS
    Boumaza, Hakim
    Stolz, Guenter
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [8] CONDUCTIVITY IN ANDERSON-TYPE MODELS - A COMPARATIVE-STUDY OF CRITICAL DISORDER
    KOLLEY, E
    KOLLEY, W
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (36): : 6099 - 6109
  • [9] Anderson-type polyoxometalates for catalytic applications
    Li, Ai-Juan
    Huang, Sheng-Li
    Yang, Guo-Yu
    DALTON TRANSACTIONS, 2023, 52 (48) : 18133 - 18136
  • [10] Anderson-type polyoxometalates: from structures to functions
    Wu, Pingfan
    Wang, Yu
    Huang, Bo
    Xiao, Zicheng
    NANOSCALE, 2021, 13 (15) : 7119 - 7133