On Centralizers of the Graph Automorphisms of Niltriangular Subalgebras of Chevalley Algebras

被引:0
|
作者
Levchuk, Vladimir M. [1 ]
Suleimanova, Galina S. [1 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk, Russia
关键词
Chevalley algebra; niltriangular subalgebra; homomorphisms of root systems; SUBGROUPS;
D O I
10.17516/1997-1397-2022-15-5-679-682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph automorphisms of a Chevalley group correspond to each type of reduced indecompos-able root system di, which Coxeter graph has a non-trivial symmetry. It is well-known, that a Chevalley algebra and its niltriangular subalgebra N has a graph automorphism theta exaclty when d is of type An, Dn or E6. We note connections with homomorphisms of root systems introduced in 1982. The main theorem on the centralizers in N of the automorphism 0 gives new representations of niltriangular subalgebras, using also the unique series of unreduced indecomposable root system of type BCn.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [1] Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras
    Levchuk, V. M.
    Litavrin, A., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 467 - 477
  • [2] Enumerations of Ideals in Niltriangular Subalgebra of Chevalley Algebras
    Hodyunya, Nikolay D.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (03): : 271 - 277
  • [3] The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms
    V. M. Levchuk
    Doklady Mathematics, 2018, 97 : 23 - 27
  • [4] The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms
    Levchuk, V. M.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 23 - 27
  • [5] Enveloping Algebras and Ideals of the Niltriangular Subalgebra of the Chevalley Algebra
    Egorychev, G. P.
    Levchuk, V. M.
    Suleimanova, G. S.
    Hodyunya, N. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (02) : 300 - 317
  • [6] Enveloping Algebras and Ideals of the Niltriangular Subalgebra of the Chevalley Algebra
    G. P. Egorychev
    V. M. Levchuk
    G. S. Suleimanova
    N. D. Hodyunya
    Siberian Mathematical Journal, 2023, 64 : 300 - 317
  • [7] Local Automorphisms of Nil-triangular Subalgebras of Classical Lie Type Chevalley Algebras
    Zotov, Igor N.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (05): : 598 - 605
  • [8] Groups of automorphisms of Chevalley algebras
    Ponomarev, KN
    Firat, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 4139 - 4155
  • [9] ON SUBALGEBRAS OF CHEVALLEY ALGEBRAS CONCERNING SUBFIELDS
    ZHA Jianguo(Department of Applied Mathematics
    SystemsScienceandMathematicalSciences, 1996, (01) : 13 - 19
  • [10] The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras
    Zotov, Igor' Nikolaevich
    Levchuk, Vladimir Mikhailovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (04): : 135 - 145