On the classification of almost contact metric manifolds

被引:3
|
作者
Martin Cabrera, Francisco [1 ]
机构
[1] Univ La Laguna, Dept Matemat Estadist & Invest Operat, Tenerife 38200, Spain
关键词
Almost contact; G-connection; Intrinsic torsion; Minimal connection; Lee form;
D O I
10.1016/j.difgeo.2019.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On connected manifolds of dimension higher than three, the non-existence of 132 Chinea and Gonzalez-Davila types of almost contact metric structures is proved. This is a consequence of some interrelations among components of the intrinsic torsion of an almost contact metric structure. Such interrelations allow to describe the exterior derivatives of some relevant forms in the context of almost contact metric geometry. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 28
页数:16
相关论文
共 50 条
  • [1] A CLASSIFICATION OF ALMOST CONTACT METRIC MANIFOLDS
    CHINEA, D
    GONZALEZ, C
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 156 : 15 - 36
  • [2] A classification of the torsion tensors on almost contact manifolds with B-metric
    Manev, Mancho
    Ivanova, Miroslava
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1416 - 1432
  • [3] Almost contact metric submersions and symplectic manifolds
    Batubenge, Augustin
    Tshikuna-Matamba, Tshikunguila
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (04) : 778 - 788
  • [4] The Intrinsic Geometry of Almost Contact Metric Manifolds
    Galaev, S., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (01): : 16 - 22
  • [5] On Conformally Flat Almost Contact Metric Manifolds
    David E. Blair
    Handan Yıldırım
    Mediterranean Journal of Mathematics, 2016, 13 : 2759 - 2770
  • [6] Curvature Identities for Almost Contact Metric Manifolds
    Polkina, E. A.
    RUSSIAN MATHEMATICS, 2007, 51 (07) : 54 - 57
  • [7] Harmonicity on some almost contact metric manifolds
    Gherghe C.
    Rendiconti del Circolo Matematico di Palermo, 2000, 49 (3) : 415 - 424
  • [8] ON A CERTAIN TRANSFORMATION IN ALMOST CONTACT METRIC MANIFOLDS
    Beldjilali, Gherici
    Akyol, Mehmet Akif
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 365 - 375
  • [9] Almost contact metric manifolds with certain condition
    Benaoumeur Bayour
    Gherici Beldjilali
    Moulay Larbi Sinacer
    Annals of Global Analysis and Geometry, 2023, 64
  • [10] Curvature identities for almost contact metric manifolds
    E. A. Polkina
    Russian Mathematics, 2007, 51 (7) : 54 - 57