3D Reconstruction of Orchid Based on Virtual Binocular Vision Technology

被引:17
|
作者
Li, Hui [1 ]
Luo, Min [2 ]
Zhang, Xia [1 ]
机构
[1] Chengdu Agr Coll, Dept Informat Technol, Chengdu, Sichuan, Peoples R China
[2] Sichuan Water Conservancy Vocat Coll, Dept Informat Engn, Chongzhou, Sichuan, Peoples R China
关键词
virtual; binocular stereo vision; 3D reconstruction; orchid flower;
D O I
10.1109/ICISCE.2017.10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is normally challenging to model flowering plants, which is affected by illumination, temperature, moisture, soil, etc. To further improve the accuracy and efficiency of such 3D modeling, a 3D reconstruction method for orchid flower, based on virtual binocular stereo vision, was proposed in this paper, where two cameras with baseline and fixed focal length were applied to constitute a binocular stereo vision system. The improved Tsai two-step calibration method was also implemented to calibrate the cameras; a stereo matching algorithm based on the improved Harris corner points and regional joint was adopted to match features. Subsequently, the cloud information of 3D space points was obtained through calculation. The Delaunay triangulation method of 3D space point set was then improved, by applying the local 3D Delaunay algorithm of mesh boundary construction, to achieve 3D reconstruction based on the OpenGL platform. The simulation results suggest that, the proposed method is characterized by high operational speed, good robustness and high modeling accuracy, valuable as reference for 3D modeling of other flowering plants.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] 3D Reconstruction of Maize Leaves Based on Virtual Binocular Visual Technology
    Li, Hui
    Zou, Chengjun
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), 2019, : 404 - 408
  • [2] Passive 3D Reconstruction Based on Binocular Vision
    Zhang, Jingjun
    Du, Ruoxia
    Gao, Ruizhen
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [3] 3D Surface Reconstruction Based on Binocular Vision
    Li, Xuesheng
    Qin, Kaiyu
    Yao, Ping
    Yu, Jun
    Wu, Wenjie
    Chen, Lu
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 1861 - 1865
  • [4] 3D Reconstruction of Surface Based on Binocular Vision
    Hu, Xiaoping
    Peng, Tao
    Xie, Ke
    SIXTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2013, 8916
  • [5] Research on Target 3D Reconstruction and Measurement Technology based on Binocular Vision and Lidar
    Ni, Yue
    Dai, Jing
    Zhang, Yaolei
    Chen, Yidong
    Ma, Xiaoyu
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1780 - 1784
  • [6] 3D Reconstruction Based on Binocular Stereo Vision of Robot
    Niu, Zhigang
    Li, Lijun
    Wang, Tie
    PRODUCT DESIGN AND MANUFACTURING, 2011, 338 : 645 - 648
  • [7] 3D Reconstruction of Traditional Handicrafts Based on Binocular Vision
    Qin, Yi
    Xu, Zhipeng
    ADVANCES IN MULTIMEDIA, 2022, 2022
  • [8] 3D reconstruction in diameter measurement based on binocular vision
    Yan-Yu, Liu
    De-Liang, Li
    Fei-Long, Zhang
    Zhi-Yong, Yin
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 1677 - 1680
  • [9] 3D Reconstruction of Traditional Handicrafts Based on Binocular Vision
    Qin, Yi
    Xu, Zhipeng
    ADVANCES IN MULTIMEDIA, 2022, 2022
  • [10] Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision
    Gai, Qiyang
    2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2017), 2018, 960