Evolution strategies for continuous optimization: A survey of the state-of-the-art

被引:44
|
作者
Li, Zhenhua [1 ]
Lin, Xi [2 ]
Zhang, Qingfu [2 ]
Liu, Hailin [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Guangdong Univ Technol, Sch Appl Math, Guangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Black-box optimization; Evolution strategies; Covariance matrix adaptation; Evolution path; Natural gradient; COVARIANCE-MATRIX ADAPTATION; STEP-SIZE ADAPTATION; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; SELF-ADAPTATION; CMA-ES; UNCONSTRAINED OPTIMIZATION; CONSTRAINED OPTIMIZATION; ALGORITHMS; SEARCH;
D O I
10.1016/j.swevo.2020.100694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolution strategies are a class of evolutionary algorithms for black-box optimization and achieve state-of-the-art performance on many benchmarks and real-world applications. Evolution strategies typically evolve a Gaussian distribution to approach the optimum. In this paper, we present a survey of recent advances in evolution strategies. We summarize the techniques, extensions, and practical considerations of evolution strategies for various optimization problems. We discuss some important open questions and promising topics that desire further research. Many of the discussed techniques and principles are applicable to other algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Data Optimization with Differential Evolution Strategies: A Survey of the State-of-the-Art
    Eltaeib, Tarik
    Dichter, Julius
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 17 - 23
  • [2] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [3] Multiobjective Bilevel Optimization: A Survey of the State-of-the-Art
    Mejia-de-Dios, Jesus-Adolfo
    Rodriguez-Molina, Alejandro
    Mezura-Montes, Efren
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (09): : 5478 - 5490
  • [4] Enhanced versions of differential evolution: state-of-the-art survey
    Mashwani, Wali Khan
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (02) : 107 - 126
  • [5] Hybrid SDN evolution: A comprehensive survey of the state-of-the-art
    Khorsandroo, Sajad
    Gallego Sanchez, Adrian
    Tosun, Ali Saman
    Arco, Jm
    Doriguzzi-Corin, Roberto
    COMPUTER NETWORKS, 2021, 192
  • [6] Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey
    Asghari, Mohammad
    Fathollahi-Fard, Amir M.
    Mirzapour Al-e-hashem, S. M. J.
    Dulebenets, Maxim A.
    MATHEMATICS, 2022, 10 (02)
  • [7] Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art
    Yun Peng
    Byron Choi
    Jianliang Xu
    Data Science and Engineering, 2021, 6 : 119 - 141
  • [8] Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art
    Peng, Yun
    Choi, Byron
    Xu, Jianliang
    DATA SCIENCE AND ENGINEERING, 2021, 6 (02) : 119 - 141
  • [9] Machine learning in continuous casting of steel: a state-of-the-art survey
    Cemernek, David
    Cemernek, Sandra
    Gursch, Heimo
    Pandeshwar, Ashwini
    Leitner, Thomas
    Berger, Matthias
    Klosch, Gerald
    Kern, Roman
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (06) : 1561 - 1579
  • [10] Machine learning in continuous casting of steel: a state-of-the-art survey
    David Cemernek
    Sandra Cemernek
    Heimo Gursch
    Ashwini Pandeshwar
    Thomas Leitner
    Matthias Berger
    Gerald Klösch
    Roman Kern
    Journal of Intelligent Manufacturing, 2022, 33 : 1561 - 1579