Augmented Lagrange methods for quasi-incompressible materials-Applications to soft biological tissue

被引:16
|
作者
Brinkhues, S. [1 ]
Klawonn, A. [2 ]
Rheinbach, O. [3 ]
Schroeder, J. [1 ]
机构
[1] Univ Duisburg Essen, Fak Ingenieurwissensch, Abt Bauwissensch, Inst Mech, D-45117 Essen, Germany
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[3] Tech Univ Chemnitz, Fak Math, D-09126 Chemnitz, Germany
关键词
soft biological tissue; domain decomposition; Lagrange multipliers; FETI; preconditioners; elliptic systems; elasticity; polyconvexity; finite elements; parallel computing; multilevel methods; quasi-incompressible; almost incompressible; nearly incompressible; PRIMAL FETI METHODS; NUMERICAL-SOLUTION; FINITE ELASTICITY; PARALLEL SOLUTION; IMPLEMENTATION; FRAMEWORK; MODELS; DP;
D O I
10.1002/cnm.2504
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Arterial walls in the healthy physiological regime are characterized by quasi-incompressible, anisotropic, hyperelastic material behavior. Polyconvex material functions representing such materials typically incorporate a penalty function to account for the incompressibility. Unfortunately, the penalty will affect the conditioning of the stiffness matrices. For high penalty parameters, the performance of iterative solvers will degrade, and when direct solvers are used, the quality of the solutions will deteriorate. In this paper, an augmented Lagrange approach is used to cope with the quasi-incompressibility condition. Here, the penalty parameter can be chosen much smaller, and as a consequence, the arising linear systems of equations have better properties. An improved convergence is then observed for the finite element tearing and interconnectingdual primal domain decomposition method, which is used as an iterative solver. Numerical results for an arterial geometry obtained from ultrasound imaging are presented. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:332 / 350
页数:19
相关论文
共 50 条
  • [1] A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues
    Gultekin, Osman
    Rodoplu, Burak
    Dal, Husnu
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2020, 19 (06) : 2357 - 2373
  • [2] A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues
    Osman Gültekin
    Burak Rodoplu
    Hüsnü Dal
    Biomechanics and Modeling in Mechanobiology, 2020, 19 : 2357 - 2373
  • [3] A Simultaneous Augmented Lagrange Approach for the Simulation of Soft Biological Tissue
    Böse, Dirk
    Brinkhues, Sarah
    Erbel, Raimund
    Klawonn, Axel
    Rheinbach, Oliver
    Schröder, Jörg
    Lecture Notes in Computational Science and Engineering, 2013, 91 : 369 - 376
  • [4] Measurement of shear elastic moduli in quasi-incompressible soft solids
    Renier, Mathieu
    Gennisson, Jean-Luc
    Barriere, Christophe
    Catheline, Stefan
    Tanter, Mickael
    Royer, Daniel
    Fink, Mathias
    NONLINEAR ACOUSTICS FUNDAMENTALS AND APPLICATIONS, 2008, 1022 : 303 - 306
  • [5] Nonlinear shear elastic moduli in quasi-incompressible soft solids
    Renier, Mathieu
    Gennisson, Jean-Luc
    Tanter, Mickael
    Catheline, Stefan
    Barriere, Christophe
    Royer, Daniel
    Fink, Mathias
    2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, : 554 - 557
  • [6] Solitary waves in slightly dispersive quasi-incompressible hyperelastic materials
    Saccomandi, Giuseppe
    Vergori, Luigi
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 298
  • [7] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Gueltekin, Osman
    Dal, Husnu
    Holzapfel, Gerhard A.
    COMPUTATIONAL MECHANICS, 2019, 63 (03) : 443 - 453
  • [8] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Osman Gültekin
    Hüsnü Dal
    Gerhard A. Holzapfel
    Computational Mechanics, 2019, 63 : 443 - 453
  • [9] Computational methods for inverse deformations in quasi-incompressible finite elasticity
    Govindjee, S
    Mihalic, PA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 43 (05) : 821 - 838
  • [10] A quasi-incompressible and quasi-inextensible element formulation for transversely isotropic materials
    Dal, H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (01) : 118 - 140