The Challenges of Using Scalp-EEG Input Signals for Continuous Device Control

被引:0
|
作者
Johnson, Garett [1 ]
Waytowich, Nicholas [1 ]
Krusienski, Dean J. [1 ]
机构
[1] Old Dominion Univ, Norfolk, VA 23529 USA
关键词
INTERFACE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whether aiming to control a computer cursor, a robotic arm, or a wheelchair, it remains a significant challenge to achieve responsive and reliable asynchronous control via EEG signals. The most promising scalp-recorded EEG signals for this task are sensorimotor rhythms and steady-state visual evoked potentials, which have both been demonstrated to be viable for continuous device operation in controlled laboratory settings. Several issues, such as handling signal nonstationarity and identifying reliable asynchronous modes of operation, must be addressed before these scalp-EEG signals can become practical for controlling devices outside of the laboratory.
引用
收藏
页码:525 / 527
页数:3
相关论文
共 50 条
  • [1] Seizure detection using scalp-EEG
    Baumgartner, Christoph
    Koren, Johannes P.
    EPILEPSIA, 2018, 59 : 14 - 22
  • [2] Modeling and interpretation of scalp-EEG and depth-EEG signals during interictal activity
    Cosandier-Rimele, D.
    Badier, J. M.
    Chauvel, P.
    Wendling, F.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 4277 - +
  • [3] Emotion Classification Using Single-Channel Scalp-EEG Recording
    Jalilifard, Amir
    Pizzolato, Ednaldo Brigante
    Islam, Md Kafiul
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 845 - 849
  • [4] Deep Learning-Based Automated Classification of Epileptic and Non-epileptic Scalp-EEG Signals
    Prabhu, Pooja
    Kotegar, Karunakar A.
    Mariyappa, N.
    Anitha, H.
    Bhargava, G. K.
    Saini, Jitender
    Sinha, Sanjib
    MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 425 - 435
  • [5] Empirical models of scalp-EEG responses using non-concurrent intracranial responses
    Kaur, Komalpreet
    Shih, Jerry J.
    Krusienski, Dean J.
    JOURNAL OF NEURAL ENGINEERING, 2014, 11 (03)
  • [6] Classification of Finger Vibrotactile Input using Scalp EEG
    He, Yongtian
    Contreras-Vidal, Jose L.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 4717 - 4720
  • [7] Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
    Alotaiby, Turky N.
    Alshebeili, Saleh A.
    Alotaibi, Faisal M.
    Alrshoud, Saud R.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [8] Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available methodologies
    Usman, Syed Muhammad
    Khalid, Shehzad
    Akhtar, Rizwan
    Bortolotto, Zuner
    Bashir, Zafar
    Qiu, Haiyang
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2019, 71 : 258 - 269
  • [9] Drone Control Using Electroencephalogram (EEG) Signals
    Itsueli, Aloaye E.
    Kamba, Jonathan D. N.
    Kamba, Jeremie O. K.
    Alba-Flores, R.
    SOUTHEASTCON 2022, 2022, : 87 - 88
  • [10] CONTINUOUS EMOTION DETECTION USING EEG SIGNALS AND FACIAL EXPRESSIONS
    Soleymani, Mohammad
    Asghari-Esfeden, Sadjad
    Pantic, Maja
    Fu, Yun
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,