Fusion of Stereo and Lidar Data for Dense Depth Map Computation

被引:0
|
作者
Courtois, Hugo [1 ]
Aouf, Nabil [1 ]
机构
[1] Cranfield Univ, Def Acad United Kingdom, Signals & Auton Grp, CEWIC, Shrivenham SN6 8LA, England
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Creating a map is a necessity in a lot of robotic applications, and depth maps are a way to estimate the position of other objects or obstacles. In this paper, an algorithm to compute depth maps is proposed. It operates by fusing information from two types of sensor: a stereo camera, and a LIDAR scanner. The strategy is to estimate reliably the disparities of a sparse set of points, then a bilateral filter is used to interpolate the missing disparities. Finally, the interpolation is refined. Our method is tested on the KITTI dataset and is compared against several other methods which fuse those modalities, or are extended to perform this fusion. Those tests show that our method is competitive with other fusion methods.
引用
收藏
页码:186 / 191
页数:6
相关论文
共 50 条
  • [1] Dense Depth-Map Estimation Based on Fusion of Event Camera and Sparse LiDAR
    Cui, Mingyue
    Zhu, Yuzhang
    Liu, Yechang
    Liu, Yunchao
    Chen, Gang
    Huang, Kai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [2] Stereo Depth Map Fusion for Robot Navigation
    Haene, Christian
    Zach, Christopher
    Lim, Jongwoo
    Ranganathan, Ananth
    Pollefeys, Marc
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1618 - 1625
  • [3] SLFNet: A Stereo and LiDAR Fusion Network for Depth Completion
    Zhang, Yongjian
    Wang, Longguang
    Li, Kunhong
    Fu, Zhiheng
    Guo, Yulan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10605 - 10612
  • [4] Fast Hierarchical depth map computation from stereo
    Kaushik, Vinay
    Lall, Brejesh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 558 - 561
  • [5] LiDAR - Stereo Camera Fusion for Accurate Depth Estimation
    Cholakkal, Hafeez Husain
    Mentasti, Simone
    Bersani, Mattia
    Arrigoni, Stefano
    Matteucci, Matteo
    Cheli, Federico
    2020 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2020,
  • [6] Expanding Sparse LiDAR Depth and Guiding Stereo Matching for Robust Dense Depth Estimation
    Xu, Zhenyu
    Li, Yuehua
    Zhu, Shiqiang
    Sun, Yuxiang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1479 - 1486
  • [7] LiStereo: Generate Dense Depth Maps from LIDAR and Stereo Imagery
    Zhang, Junming
    Ramanagopal, Manikandasriram Srinivasan
    Vasudevan, Ram
    Johnson-Roberson, Matthew
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7829 - 7836
  • [8] Real-time dense map fusion for stereo SLAM
    Pire, Taihu
    Baravalle, Rodrigo
    D'Alessandro, Ariel
    Civera, Javier
    ROBOTICA, 2018, 36 (10) : 1510 - 1526
  • [9] Automatic Registration of LiDAR and Optical Imagery using Depth Map Stereo
    Kim, Hyojin
    Correa, Carlos D.
    Max, Nelson
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2014,
  • [10] FastFusion: Deep stereo-LiDAR fusion for real-time high-precision dense depth sensing
    Meng, Haitao
    Li, Changcai
    Zhong, Chonghao
    Gu, Jianfeng
    Chen, Gang
    Knoll, Alois
    JOURNAL OF FIELD ROBOTICS, 2023, 40 (07) : 1804 - 1816