Deep Subspace Mapping in Hyperspectral Imaging

被引:0
|
作者
Wadstromer, Niclas [1 ]
Gustafsson, David [1 ]
Petersson, Henrik [1 ]
Bergstrom, David [1 ]
机构
[1] Swedish Def Res Agcy FOI, Linkoping, Sweden
来源
关键词
hyperspectral imaging; subspace mapping; Deep learning; autoencoder; stacked autoencoder; CLASSIFICATION;
D O I
10.1117/12.2241771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel Deep learning approach using autoencoders to map spectral bands to a space of lower dimensionality while preserving the information that makes it possible to discriminate different materials. Deep learning is a relatively new pattern recognition approach which has given promising result in many applications. In Deep learning a hierarchical representation of increasing level of abstraction of the features is learned. Autoencoder is an important unsupervised technique frequently used in Deep learning for extracting important properties of the data. The learned latent representation is a non-linear mapping of the original data which potentially preserve the discrimination capacity.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Learning Deep Subspace Projection Prior for Dual-Camera Compressive Hyperspectral Imaging
    Chen, Xiaoyang
    Yang, Jingxiang
    Xiao, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Mapping corrosion with hyperspectral imaging
    Halford, Bethany
    CHEMICAL & ENGINEERING NEWS, 2018, 96 (41) : 10 - 10
  • [3] Multifeature deep subspace clustering for hyperspectral band selection
    He K.
    Sun W.
    Huang K.
    Chen B.
    Yang G.
    National Remote Sensing Bulletin, 2024, 28 (01) : 132 - 141
  • [4] Adaptive matched subspace detectors for hyperspectral imaging applications
    Manolakis, D
    Siracusa, C
    Shaw, G
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3153 - 3156
  • [5] A Theory of Recursive Orthogonal Subspace Projection for Hyperspectral Imaging
    Song, Meiping
    Chang, Chein-I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3055 - 3072
  • [6] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
    Lei, Jianjun
    Li, Xinyu
    Peng, Bo
    Fang, Leyuan
    Ling, Nam
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2686 - 2697
  • [7] Hyperspectral Image Denoising via Double Subspace Deep Prior
    Shi, Kexin
    Peng, Jiangjun
    Gao, Jing
    Luo, Yisi
    Xu, Shuang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] Deep Mutual Information Subspace Clustering Network for Hyperspectral Images
    Li, Tiancong
    Cai, Yaoming
    Zhang, Yongshan
    Cai, Zhihua
    Liu, Xiaobo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Subspace-Based Target Detection in LWIR Hyperspectral Imaging
    Acito, N.
    Moscadelli, M.
    Diani, M.
    Corsini, G.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1047 - 1051
  • [10] First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules
    Dumke, Ines
    Nornes, Stein M.
    Purser, Autun
    Marcon, Yann
    Ludvigsen, Martin
    Ellefmo, Steinar L.
    Johnsen, Geir
    Soreide, Fredrik
    REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 19 - 30