Accuracy, Efficiency and Stability Analysis of Sparse-grid Quadrature Kalman Filter in Near Space Hypersonic Vehicles

被引:0
|
作者
Chen, Hongmei [1 ]
Cheng, Xianghong
Dai, Chenxi
Ran, Changyan
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China
关键词
Taylor expansion; accuracy analysis; SGQKF; QKF; computational complexity; stability analysis; transfer alignment; near space hypersonic vehicle; APPROXIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a recently developed sampling strategy, Sparse-grid quadrature rule has been paid more attention within nonlinear estimation for its high accuracy and low computation cost. Through the Taylor series expansion, the accuracy of Sparse-grid Quadrature Kalman Filter (SGQKF) is analyzed and compared with Quadrature Kalman Filter (QKF). In addition, the computational complexity is analyzed to evaluate the efficiency of SGQKF. The SGQKF asymptotic stability behavior is analyzed by introducing an unknown instrumental diagonal matrix. The theoretical analysis shows that the SGQKF is computationally much more efficient than QKF with the same even higher accuracy; consequently the curse of dimensionality for high dimensional problems can be effectively alleviated. Sufficient conditions for bounded stability are established and it is proved that the estimation error of SGQKF nonlinear systems is exponentially asymptotic. The performance of SGQKF is demonstrated by transfer alignment with large azimuth misalignment angle for Near-space hypersonic vehicle (NSHV), and the simulation results are used to illustrate the benefits of state estimation and modified noise covariance matrix. Our framework is deterministic.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 16 条
  • [1] Sparse-grid Quadrature Kalman Filter based on the Kronrod-Patterson Rule
    Cheng Xianghong
    Ran Changyan
    Wang Haipeng
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 1396 - 1401
  • [2] Sparse-grid square-root quadrature nonlinear filter
    Wu, Zong-Wei
    Yao, Min-Li
    Ma, Hong-Guang
    Jia, Wei-Min
    Tian, Fang-Hao
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2012, 40 (07): : 1298 - 1303
  • [3] Nonlinearity-based Adaptive Sparse-Grid Quadrature Filter
    Sun, Tao
    Xin, Ming
    Jia, Bin
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 2499 - 2504
  • [4] A Novel Robust Sparse-Grid Quadrature Kalman Filter Design for HCV Transfer Alignment Against Model Parameter Uncertainty
    Chen, Hongmei
    Liu, Jianjuan
    JOURNAL OF NAVIGATION, 2018, 71 (03): : 625 - 648
  • [5] Vision-Based Spacecraft Relative Navigation Using Sparse-Grid Quadrature Filter
    Jia, Bin
    Xin, Ming
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) : 1595 - 1606
  • [6] An adaptive sparse-grid iterative ensemble Kalman filter approach for parameter field estimation
    Webster, Clayton G.
    Zhang, Guannan
    Gunzburger, Max
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (04) : 798 - 817
  • [7] Sparse-Grid Quadrature H∞ Filter for Discrete-Time Systems with Uncertain Noise Statistics
    Jia, Bin
    Xin, Ming
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) : 1626 - 1636
  • [8] Distributed State Fusion Using Sparse-Grid Quadrature Filter With Application to INS/CNS/GNSS Integration
    Gao, Bingbing
    Hu, Gaoge
    Zhong, Yongmin
    Zhu, Xinhe
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3430 - 3441
  • [9] M-estimation based sparse grid quadrature filter and stochastic stability analysis
    Qian, Chen
    Chen, Qingwei
    Wu, Yifei
    Guo, Jian
    Gao, Yang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (15): : 7916 - 7937
  • [10] Sensor Drift Compensation Using Fuzzy Interference System and Sparse-Grid Quadrature Filter in Blood Glucose Control
    Szalay, Peter
    Szilagyi, Laszlo
    Benyo, Zoltan
    Kovacs, Levente
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 445 - 453