On prolongations of valuations via Newton polygons and liftings of polynomials

被引:22
|
作者
Khanduja, Sudesh K. [1 ]
Kumar, Sanjeev [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Sas Nagar 140306, Punjab, India
[2] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
TRANSCENDENTAL EXTENSIONS; THEOREM;
D O I
10.1016/j.jpaa.2012.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let v be a real valuation of a field K with valuation ring R-v. Let K(theta) be a finite separable extension of K with theta integral over R, and F (x) be the minimal polynomial of theta over K. Using Newton polygons and residually transcendental prolongations of v to a simple transcendental extension K (x) of K together with liftings with respect to such prolongations, we describe a method to determine all prolongations of v to K(theta) along with their residual degrees and ramification indices over v. The problem is classical but our approach uses new ideas. The paper gives an analogue of Ore's Theorem when the base field is an arbitrary rank-1 valued field and extends the main result of [S.D Cohen, A. Movahhedi, A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 (2000) 173-196]. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2648 / 2656
页数:9
相关论文
共 50 条
  • [1] Newton polygons and families of polynomials
    Bodin, A
    MANUSCRIPTA MATHEMATICA, 2004, 113 (03) : 371 - 382
  • [2] Newton polygons and families of polynomials
    Arnaud Bodin
    manuscripta mathematica, 2004, 113 : 371 - 382
  • [3] Factoring bivariate polynomials with integer coefficients via Newton polygons
    Crvenkovic, Sinisa
    Pavkov, Ivan
    FILOMAT, 2013, 27 (02) : 215 - 226
  • [4] Higher order Bernoulli polynomials and Newton polygons
    Adelberg, A
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, 1998, : 1 - 8
  • [5] Prolongations of valuations to finite extensions
    Khanduja, Sudesh K.
    Kumar, Munish
    MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 323 - 334
  • [6] On prolongations of valuations to the composite field
    Jakhar, Anuj
    Khanduja, Sudesh K.
    Sangwan, Neeraj
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (02) : 551 - 558
  • [7] Prolongations of valuations to finite extensions
    Sudesh K. Khanduja
    Munish Kumar
    manuscripta mathematica, 2010, 131 : 323 - 334
  • [8] Newton polygons of L functions of polynomials xd + ax
    Ouyang, Yi
    Yang, Jinbang
    JOURNAL OF NUMBER THEORY, 2016, 160 : 478 - 491
  • [9] NEWTON POLYGONS ASSOCIATED TO HERMITE, LAGUERRE AND LEGENDRE POLYNOMIALS
    VONLANTHEN, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (08): : 873 - 876
  • [10] Descartes' rule of signs, Newton polygons, and polynomials over hyperfields
    Baker, Matthew
    Lorscheid, Oliver
    JOURNAL OF ALGEBRA, 2021, 569 : 416 - 441