Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors

被引:1
|
作者
Perez-Bueno, Fernando [1 ]
Vega, Miguel [2 ]
Mateos, Javier [1 ]
Molina, Rafael [1 ]
Katsaggelos, Aggelos K. [3 ]
机构
[1] Univ Granada, Dept Ciencias Computac & Inteligencia Artificial, E-18071 Granada, Spain
[2] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
pansharpening; variational Bayesian; image fusion; super-Gaussians; PAN-SHARPENING METHOD; INTENSITY MODULATION; FUSION TECHNIQUE; MULTIRESOLUTION; FILTER; MS; ALGORITHMS; QUALITY; MODEL;
D O I
10.3390/s20185308
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Pansharpening is a technique that fuses a low spatial resolution multispectral image and a high spatial resolution panchromatic one to obtain a multispectral image with the spatial resolution of the latter while preserving the spectral information of the multispectral image. In this paper we propose a variational Bayesian methodology for pansharpening. The proposed methodology uses the sensor characteristics to model the observation process and Super-Gaussian sparse image priors on the expected characteristics of the pansharpened image. The pansharpened image, as well as all model and variational parameters, are estimated within the proposed methodology. Using real and synthetic data, the quality of the pansharpened images is assessed both visually and quantitatively and compared with other pansharpening methods. Theoretical and experimental results demonstrate the effectiveness, efficiency, and flexibility of the proposed formulation.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Bayesian combination of sparse and non-sparse priors in image super resolution
    Villena, S.
    Vega, M.
    Babacan, S. D.
    Molina, R.
    Katsaggelos, A. K.
    DIGITAL SIGNAL PROCESSING, 2013, 23 (02) : 530 - 541
  • [2] PARAMETER ESTIMATION IN BAYESIAN BLIND DECONVOLUTION WITH SUPER GAUSSIAN IMAGE PRIORS
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1632 - 1636
  • [3] Deblurring Natural Image Using Super-Gaussian Fields
    Liu, Yuhang
    Dong, Wenyong
    Gong, Dong
    Zhang, Lei
    Shi, Qinfeng
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 467 - 484
  • [4] Variational Bayesian localization of EEG sources with generalized Gaussian priors
    Cortes, J. M.
    Lopez, A.
    Molina, R.
    Katsaggelos, A. K.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (11):
  • [5] Variational Bayesian localization of EEG sources with generalized Gaussian priors
    J. M. Cortes
    A. Lopez
    R. Molina
    A. K. Katsaggelos
    The European Physical Journal Plus, 127
  • [6] Variational Bayesian multinomial probit regression with gaussian process priors
    Girolami, Mark
    Rogers, Simon
    NEURAL COMPUTATION, 2006, 18 (08) : 1790 - 1817
  • [7] Super-Gaussian non-Stationary Audio Noises Sparse Representation
    Abedi, Mostafa
    Pourmohammad, Ali
    2015 11TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2015, : 152 - 155
  • [8] On the Importance of Super-Gaussian Speech Priors for Machine-Learning Based Speech Enhancement
    Rehr, Robert
    Gerkmann, Timo
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (02) : 357 - 366
  • [9] A nonparametric Bayesian model for system identification based on a super-Gaussian distribution
    Tanji, Hiroki
    Murakami, Takahiro
    Kamata, Hiroyuki
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2019, 102 (07) : 32 - 40
  • [10] Fast Bayesian blind deconvolution with Huber Super Gaussian priors
    Zhou, Xu
    Vega, Miguel
    Zhou, Fugen
    Molina, Rafael
    Katsaggelos, Aggelos K.
    DIGITAL SIGNAL PROCESSING, 2017, 60 : 122 - 133