Spanning trees in random satisfiability problems

被引:2
|
作者
Ramezanpour, A. [1 ]
Moghimi-Araghi, S.
机构
[1] Inst Adv Studies Basic Sci, Zanjan 45195 1159, Iran
[2] Sharif Univ Technol, Dept Phys, Tehran, Iran
来源
关键词
D O I
10.1088/0305-4470/39/18/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Working with tree graphs is always easier than with loopy ones and spanning trees are the closest tree-like structures to a given graph. We find a correspondence between the solutions of random K-satisfiability problem and those of spanning trees in the associated factor graph. We introduce a modified survey propagation algorithm which returns null edges of the factor graph and helps us to find satisfiable spanning trees. This allows us to study organization of satisfiable spanning trees in the space spanned by spanning trees.
引用
收藏
页码:4901 / 4909
页数:9
相关论文
共 50 条
  • [1] Spanning trees in random graphs
    Montgomery, Richard
    ADVANCES IN MATHEMATICS, 2019, 356
  • [2] RANDOM LEADERS AND RANDOM SPANNING-TREES
    BARILAN, J
    ZERNIK, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 392 : 1 - 12
  • [3] Spanning trees and optimization problems
    Silva, D
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2006, 57 (02) : 227 - 228
  • [4] Spanning trees and optimization problems
    Akkucuk, Ulas
    INTERFACES, 2006, 36 (03) : 277 - 278
  • [5] EXPANDERS VIA RANDOM SPANNING TREES
    Frieze, Alan
    Goyal, Navin
    Rademacher, Luis
    Vempala, Santosh
    SIAM JOURNAL ON COMPUTING, 2014, 43 (02) : 497 - 513
  • [6] Faster generation of random spanning trees
    Kelner, Jonathan A.
    Madry, Aleksander
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 13 - 21
  • [7] Random Selection of Spanning Trees on Graphs
    Luis Perez-Perez, Sergio
    Benito Morales-Luna, Guillermo
    Davino Sagols-Troncoso, Feliu
    COMPUTACION Y SISTEMAS, 2012, 16 (04): : 457 - 469
  • [8] EMBEDDING SPANNING TREES IN RANDOM GRAPHS
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1495 - 1500
  • [9] Minimum spanning trees on random networks
    Dobrin, R
    Duxbury, PM
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5076 - 5079
  • [10] GENERATING RANDOM SPANNING-TREES
    BRODER, A
    30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 442 - 447