Acceleration schemes for computing centroidal Voronoi tessellations

被引:49
|
作者
Du, Q
Emelianenko, M [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
centroidal Voronoi tessellations; cornputational algorithms; Lloyd's method; Newton's method; multilevel method; uniform convergence;
D O I
10.1002/nla.476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Centroidal Voronoi tessellations (CVT) have diverse applications ill many areas of science and engineering,. The development of efficient algorithms for their construction is a key to their success in practice. In this paper, we study sorne new algorithms for the numerical computation of the CVT, including the Lloyd-Newton iteration and the optimization based multilevel method. Both theoretical analysis and computational simulations are conducted. Rigorous convergence results are presented and significant speedup in computation is demonstrated through the comparison with traditional methods. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 50 条
  • [1] Fast Methods for Computing Centroidal Voronoi Tessellations
    James C. Hateley
    Huayi Wei
    Long Chen
    Journal of Scientific Computing, 2015, 63 : 185 - 212
  • [2] Fast Methods for Computing Centroidal Voronoi Tessellations
    Hateley, James C.
    Wei, Huayi
    Chen, Long
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (01) : 185 - 212
  • [3] Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations
    Du, Q
    Emelianenko, M
    Ju, LL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 102 - 119
  • [4] PERIODIC CENTROIDAL VORONOI TESSELLATIONS
    Zhang, Jingyan
    Emelianenko, Maria
    Du, Qiang
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (04) : 950 - 969
  • [5] Mahalanobis centroidal Voronoi tessellations
    Richter, Ronald
    Alexa, Marc
    COMPUTERS & GRAPHICS-UK, 2015, 46 : 48 - 54
  • [6] Anisotropic centroidal Voronoi tessellations and their applications
    Du, Q
    Wang, DS
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 737 - 761
  • [7] Centroidal Voronoi tessellations: Applications and algorithms
    Du, Q
    Faber, V
    Gunzburger, M
    SIAM REVIEW, 1999, 41 (04) : 637 - 676
  • [8] Centroidal Voronoi tessellations: Applications and algorithms
    Department of Mathematics, Iowa State University, Ames, IA 50011-2064, United States
    不详
    不详
    不详
    SIAM Rev, 4 (637-676):
  • [9] Halftoning with Weighted Centroidal Voronoi Tessellations
    Inoue, Kohei
    Urahama, Kiichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (06) : 1103 - 1105
  • [10] ON THE CHARACTERIZATION AND UNIQUENESS OF CENTROIDAL VORONOI TESSELLATIONS
    Urschel, John C.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1525 - 1547