On an optimal quadrature formula in Sobolev space L2(m)(0,1)

被引:9
|
作者
Shadimetov, Kh M. [1 ]
Hayotov, A. R. [1 ]
Nuraliev, F. A. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Tashkent 100125, Uzbekistan
关键词
Optimal quadrature formulas; The error functional; The extremal function; SL Sobolev space; Optimal coefficients;
D O I
10.1016/j.cam.2012.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space L-2((m))(0, 1). In this paper the quadrature sum consists of values of the integrand at nodes and values of the first derivative of the integrand at the end points of the integration interval. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number N and for any m >= 2 using the S.L. Sobolev method which is based on a discrete analog of the differential operator d(2m)/dx(2m). In particular, for m = 2, 3 optimality of the classical Euler-Maclaurin quadrature formula is obtained. Starting from m = 4 new optimal quadrature formulas are obtained. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 50 条
  • [1] Optimal quadrature formulas with positive coefficients in L2(m) (0,1) space
    Shadimetov, Kh M.
    Hayotov, A. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1114 - 1128
  • [2] Optimal Interpolation Formulas with Derivative in the Space L2(m)(0,1)
    Shadimetov, Kh. M.
    Hayotov, A. R.
    Nuraliev, F. A.
    FILOMAT, 2019, 33 (17) : 5661 - 5675
  • [3] Construction of Dm-splines in L2(m) (0,1) space by Sobolev method
    Cabada, A.
    Hayotov, A. R.
    Shadimetov, Kh. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 542 - 551
  • [4] On an optimal quadrature formula for approximation of Fourier integrals in the space L2(1)
    Hayotov, Abdullo R.
    Jeon, Soomin
    Lee, Chang-Ock
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [5] The coordinate system μ x κ on L2([0,1]) x L2([0,1]) for the AKNS operator
    Amour, Laurent
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 83 - 93
  • [6] A fundamental set in L2(0,1)
    Yang, Jongho
    ACTA ARITHMETICA, 2021, 199 (03) : 269 - 274
  • [7] SUBSPACES OF L2[0,1] IN LP,P]2
    SHAPIRO, HS
    WILLIAMS, J
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 435 - &
  • [8] Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space L2(m)(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}^{(m)}(0,1)$\end{document}
    N. D. Boltaev
    A. R. Hayotov
    Kh. M. Shadimetov
    Numerical Algorithms, 2017, 74 (2) : 307 - 336
  • [9] Semi-orthogonal Wavelets of Space L2[0,1] and Fast Wavelet Algorithms
    Turki, Turghunjan Abdukirim
    Bardi, Matturdi
    Yushan, Aliya
    Huang Yunhu
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 2909 - 2914
  • [10] L2~0([0,1])的小波基底构造
    杨霞
    湖北工学院学报, 2000, (02) : 74 - 76+80