Investigating Protein-Protein and Protein-Ligand Interactions by Molecular Dynamics Simulations

被引:1
|
作者
Haberl, Florian [1 ]
Othersen, Olaf [1 ]
Seidel, Ute [1 ]
Lanig, Harald [1 ]
Clark, Tim [1 ]
机构
[1] Univ Erlangen Nurnberg, Comp Chem Ctr, D-91052 Erlangen, Germany
关键词
TET-REPRESSOR; TETRACYCLINE-REPRESSOR; FORCE-FIELDS; RESISTANCE; SYSTEM; INDUCTION; GENE;
D O I
10.1007/978-3-540-69182-2_12
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, the earlier view of proteins as relatively rigid structures has been replaced by a dynamic model in which the internal motions and resulting conformational changes play an essential role in their function. In this context, molecular dynamics (MD) simulations have become an important computational tool for understanding the physical basis of the structure and function of biological macromolecules. Also in the process of finding new drugs MD simulations play an important role. Our workgroup uses molecular dynamics simulations to study proteins of biological and medical relevance, e.g. signal transduction proteins or human integrin complexes. The general aim of these investigations is to find possible new lead structures or drugs and also to understand the basic and essential mechanisms behind the mode of action of our target systems. In MD simulation, the problem size is fixed and a large number of iterations must be executed, so the MD simulation suites have to scale to hundreds or thousands CPUs to get detailed view inside biomolecular systems. The used programs AMBER and GROMACS scale well up to 64 or 32 CPUs, respectively. A typical run for about 100 ns simulation time consumes 5500 up to 21000 CPU hours.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [1] PROTEIN-PROTEIN AND PROTEIN-LIGAND INTERACTIONS
    LUNDBERG, S
    BACKMAN, L
    AQUEOUS TWO-PHASE SYSTEMS, 1994, 228 : 241 - 254
  • [3] Steered molecular dynamics simulations of protein-ligand interactions
    Yechun Xu
    Jianhua Shen
    Xiaomin Luo
    Xu Shen
    Kaixian Chen
    Hualiang Jiang
    Science in China Series B: Chemistry, 2004, 47 : 355 - 366
  • [4] Steered molecular dynamics simulations of protein-ligand interactions
    Xu, YC
    Shen, JH
    Luo, XM
    Shen, X
    Chen, KX
    Jiang, HL
    SCIENCE IN CHINA SERIES B-CHEMISTRY, 2004, 47 (05): : 355 - 366
  • [5] Specificity and promiscuity in protein-ligand and protein-protein interactions
    Colman, PM
    Smith, BJ
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2003, 56 (08) : 763 - 767
  • [6] Prediction of protein-protein and protein-ligand interactions from protein structures
    Jones, D
    Sodhi, J
    Lise, S
    McGuffin, L
    Bryson, K
    FEBS JOURNAL, 2005, 272 : 397 - 398
  • [7] NMR as a tool to target protein-protein and protein-ligand interactions
    Lalli, D.
    De Pablo, R.
    Del Conte, R.
    Turano, P.
    FEBS JOURNAL, 2012, 279 : 437 - 437
  • [8] Treatment of flexibility of protein backbone in simulations of protein-ligand interactions using steered molecular dynamics
    Duc Toan Truong
    Ho, Kiet
    Dinh Quoc Huy Pham
    Chwastyk, Mateusz
    Thai Nguyen-Minh
    Minh Tho Nguyen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Practical ITC and its applications in protein-ligand and protein-protein interactions
    Cooper, A
    FASEB JOURNAL, 2004, 18 (08): : C113 - C113
  • [10] Investigating the dynamics of protein-protein interactions in plants
    Zhang, Youjun
    Chen, Moxian
    Liu, Tieyuan
    Qin, Kezhen
    Fernie, Alisdair R.
    PLANT JOURNAL, 2023, 114 (04): : 965 - 983