Local obstructions to projective surfaces admitting skew-symmetric Ricci tensor

被引:6
|
作者
Randall, Matthew [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
关键词
Projective differential geometry; Overdetermined system of PDEs; Invariant differential operators; CONNECTIONS;
D O I
10.1016/j.geomphys.2013.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equation determining whether a projective structure admits a connection in its given projective class that has skew-symmetric Ricci tensor is an overdetermined system of semi-linear partial differential equations which we call the projective Einstein-Weyl (pEW) equation. In 2-dimensions, we give local obstructions for projective surfaces to admit such a connection in its projective class. The obstructions are the resultants of polynomial equations that have to be satisfied for there to admit any pEW solution. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 27 条
  • [1] Connections with skew-symmetric Ricci tensor on surfaces
    Derdzinski, Andrzej
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 223 - 245
  • [2] Connections with Skew-Symmetric Ricci Tensor on Surfaces
    Andrzej Derdzinski
    Results in Mathematics, 2008, 52 : 223 - 245
  • [3] Skew-symmetric tensor decomposition
    Arrondo, Enrique
    Bernardi, Alessandra
    Marques, Pedro Macias
    Mourrain, Bernard
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (02)
  • [4] SPACES WITH PARALLEL RICCI TENSOR ADMITTING PROJECTIVE TRANSFORMATIONS
    AKBARZADEH, H
    COUTY, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 891 - 893
  • [5] AFFINE CONNECTIVITIES ADJOINED TO A SKEW-SYMMETRIC TENSOR
    LEVIN, II
    DOKLADY AKADEMII NAUK SSSR, 1959, 128 (04): : 668 - 671
  • [6] A Classification of Locally Homogeneous Affine Connections with Skew-Symmetric Ricci Tensor on 2-Dimensional Manifolds
    Oldřich Kowalski
    Barbara Opozda
    Zdeněk Vlášek
    Monatshefte für Mathematik, 2000, 130 : 109 - 125
  • [7] A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2-dimensional manifolds
    Kowalski, O
    Opozda, B
    Vlásek, Z
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (02): : 109 - 125
  • [8] Z-symmetric manifold admitting concircular Ricci symmetric tensor
    A. Yavuz Taşci
    F. Özen Zengin
    Afrika Matematika, 2020, 31 : 1093 - 1104
  • [9] Z-symmetric manifold admitting concircular Ricci symmetric tensor
    Tasci, A. Yavuz
    Zengin, F. Ozen
    AFRIKA MATEMATIKA, 2020, 31 (7-8) : 1093 - 1104
  • [10] POSSIBLE OBSERVATION OF SKEW-SYMMETRIC TENSOR GAUGE FIELD
    MIYAMOTO, S
    NAKANO, T
    PROGRESS OF THEORETICAL PHYSICS, 1971, 45 (01): : 295 - &