Titanium film deposition by high-power impulse magnetron sputtering: Influence of pulse duration

被引:52
|
作者
Jing, F. J. [1 ]
Yin, T. L. [1 ]
Yukimura, K. [1 ,2 ]
Sun, H. [1 ]
Leng, Y. X. [1 ]
Huang, N. [1 ]
机构
[1] SW Jiaotong Univ, Minist Educ, Key Lab Adv Mat Technol, Chengdu 610031, Peoples R China
[2] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
HIPIMS; HPPMS; High-power glow; Glow; Magnetron; Deposition rate; Thermal spike; Target temperature; IMMERSION ION-IMPLANTATION; THIN-FILMS; STRESS RELIEF; ENERGY; DISCHARGE; TEMPERATURE; TEXTURE;
D O I
10.1016/j.vacuum.2012.06.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface modification with high-power glow discharges is a promising physical vapor deposition (PVD) technology for industrial usage. A metal ion density higher than 10(18) m(-3) can be obtained due to a high-power input in the plasma. In the present paper, titanium films were deposited on Si (100) substrates using high-power impulse magnetron sputtering (HIPIMS). The pulse duration was varied to investigate the deposition rate and the titanium film structure. The plasma source was an unbalanced magnetron sputtering (UBMS) discharge generation system. The deposition rate was correlated to the electrical characteristics. There was an instantaneous power threshold of approximately 36 kW to significantly increase the deposition rate by 4-5 times. The deposition rate increased linearly with respect to the average power until the average power reached 5.6 kW (about 30 W/cm(2) for a total area of the target), and an 83% increase of the deposition rate from the linear relationship was observed. The increase of the deposition rate was possibly closely related to the so-called thermal spike, where the target temperature increases due to a high power input to the target. The surface morphology and the crystalline structure of the films were studied for a variety of pulse durations, and the results were compared to the case of the direct-current magnetron sputtering (dcMS) process. The titanium films at an average power of 1.2 kW and a pulse duration of 50 mu s have a smaller crystalline size and a smoother surface than those at an average power of 825 W by dcMS. The crystal orientation (101) was dominated when the pulse duration was lengthened to 180 mu s, although the (002) orientation was dominant in dcMS. The crystal size and the surface roughness increased significantly when the pulse duration was increased from 50 mu s to 180 mu s in HIPIMS. The consumed power in the plasma by HIPIMS can be an important parameter for the crystal size and the structure. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:2114 / 2119
页数:6
相关论文
共 50 条
  • [1] Film characterization of titanium oxide films prepared by high-power impulse magnetron sputtering
    Jing, F. J.
    Yukimura, K.
    Kato, H.
    Lei, Y. F.
    You, T. X.
    Leng, Y. X.
    Huang, N.
    SURFACE & COATINGS TECHNOLOGY, 2011, 206 (05): : 967 - 971
  • [2] Deposition of zinc oxide layers by high-power impulse magnetron sputtering
    Konstantinidis, S.
    Hemberg, A.
    Dauchot, J. P.
    Hecq, M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (03): : L19 - L21
  • [3] a-phase tantalum film deposition using bipolar high-power impulse magnetron sputtering technique
    Cho, Min Gyeong
    Kang, Unhyeon
    Lim, Sang Ho
    Han, Seunghee
    THIN SOLID FILMS, 2023, 767
  • [4] Titanium oxide thin films deposited by high-power impulse magnetron sputtering
    Konstantinidis, S.
    Dauchot, J. P.
    Hecq, A.
    THIN SOLID FILMS, 2006, 515 (03) : 1182 - 1186
  • [5] The influence of pulse duration and duty cycle on the energy flux to the substrate in high power impulse magnetron sputtering
    Oskirko, V. O.
    Zakharov, A. N.
    Grenadyorov, A. S.
    Pavlov, A. P.
    Semenov, V. A.
    Rabotkin, S. V.
    Kozhevnikov, V. Yu.
    Solovyev, A. A.
    VACUUM, 2023, 216
  • [6] Effect of voltage pulse characteristics on high-power impulse magnetron sputtering of copper
    Kozak, Tomas
    Vlcek, Jaroslav
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (01):
  • [7] An introduction to thin film processing using high-power impulse magnetron sputtering
    Daniel Lundin
    Kostas Sarakinos
    Journal of Materials Research, 2012, 27 : 780 - 792
  • [8] An introduction to thin film processing using high-power impulse magnetron sputtering
    Lundin, Daniel
    Sarakinos, Kostas
    JOURNAL OF MATERIALS RESEARCH, 2012, 27 (05) : 780 - 792
  • [9] Effect of pulse interval on deposition of diamond-like carbon through high-power impulse magnetron sputtering
    Ohta, Takayuki
    Kunieda, Hiro
    Harigai, Toru
    Oda, Akinori
    Kousaka, Hiroyuki
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [10] High-power impulse magnetron sputtering and its applications
    Ehiasarian, Arutiun P.
    PURE AND APPLIED CHEMISTRY, 2010, 82 (06) : 1247 - 1258