Using latent class modeling to detect bimodality in spacing effect data

被引:10
|
作者
Verkoeijen, Peter P. J. L. [1 ]
Bouwmeester, Samantha [1 ]
机构
[1] Erasmus Univ, Dept Psychol, NL-3000 DR Rotterdam, Netherlands
关键词
Bimodality; Free recall; Latent class regression analysis; Spacing effect;
D O I
10.1016/j.jml.2007.09.005
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
A recently proposed theory of the spacing effect [Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: application of the SAM model. Cognitive Science, 27, 431-452.] suggests that the spacing effect is conditional on study-phase retrieval leading to two groups of students showing different magnitudes of the spacing-effect. This bimodality was also observed in histograms of spacing-effect data. In this study, we used latent class regression analysis to investigate whether these groups can be detected in existing datasets (Experiment 1). Specific hypotheses about the magnitude of the spacing effect in the latent classes were assessed in Experiment 2. Latent class regression analysis in both experiments showed that the fit of the two-class model was considerably better than the (1-class) ANOVA model. Moreover, the results of Experiment 2 showed, in line with our predictions, that when the presentation rate changed from 1 s to 4 s the increase in spacing effect was larger for the low-performing class than for the high-performing class. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 50 条
  • [1] A latent class modeling approach to detect network intrusion
    Wang, Yun
    Kim, Inyoung
    Mbateng, Gaston
    Ho, Shih-Yieh
    COMPUTER COMMUNICATIONS, 2006, 30 (01) : 93 - 100
  • [2] Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
    Roy, J
    BIOMETRICS, 2003, 59 (04) : 829 - 836
  • [3] Problems with latent class analysis to detect data-driven subtypes of depression
    H M van Loo
    R B K Wanders
    K J Wardenaar
    E I Fried
    Molecular Psychiatry, 2018, 23 : 495 - 496
  • [4] Problems with latent class analysis to detect data-driven subtypes of depression
    van Loo, H. M.
    Wanders, R. B. K.
    Wardenaar, K. J.
    Fried, E. I.
    MOLECULAR PSYCHIATRY, 2018, 23 (03) : 495 - 496
  • [5] Using latent class analysis to detect behavioral patterns in systems of observational variables
    Webels, H
    VonEye, A
    EVALUATION AND PROGRAM PLANNING, 1996, 19 (04) : 321 - 331
  • [6] Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data
    van der Palm, Daniel W.
    van der Ark, L. Andries
    Vermunt, Jeroen K.
    JOURNAL OF CLASSIFICATION, 2016, 33 (01) : 52 - 72
  • [7] Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data
    Daniël W. van der Palm
    L. Andries van der Ark
    Jeroen K. Vermunt
    Journal of Classification, 2016, 33 : 52 - 72
  • [8] Modeling Airport Choice Using a Latent Class Logit Model
    dell'Olio, Luigi
    Rodriguez, Andres
    Sipone, Silvia
    AEROSPACE, 2023, 10 (08)
  • [9] Modeling Normal Pulmonary Function Using Latent Class Analysis
    Moffett, A. T.
    Himes, B. E.
    Halpern, S. D.
    Weissman, G. E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [10] Analysis of ranked preference data using latent class models
    Vigneau, E
    Courcoux, P
    Séménou, M
    FOOD QUALITY AND PREFERENCE, 1999, 10 (03) : 201 - 207