Document Clustering Using Incremental and Pairwise Approaches

被引:0
|
作者
Tran, Tien [1 ]
Nayak, Richi [1 ]
Bruza, Peter [1 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld 4001, Australia
来源
关键词
Clustering; structure; content; XML; INEX; 2007;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the experiments and results of a clustering approach for clustering of the large Wikipedia dataset in the INEX 2007 Document Mining Challenge. The clustering approach employed makes use of an incremental clustering method and a pairwise clustering method. The approach enables us to perform the clustering task on a large dataset by first reducing the dimension of the dataset to an undefined number of clusters using the incremental method. The lower-dimension dataset is then clustered to a required number of clusters using the pairwise method. In this way, clustering of the large number of documents is performed successfully and the accuracy of the clustering solution is achieved.
引用
收藏
页码:222 / 233
页数:12
相关论文
共 50 条
  • [1] Document clustering with pairwise constraints
    Kreesuradej, W
    Suwanlamai, A
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2006, 20 (02) : 241 - 254
  • [2] A New Incremental Pairwise Clustering Algorithm
    Seo, Sambu
    Mohr, Johannes
    Obermayer, Klaus
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 223 - 228
  • [3] Incremental document clustering using cluster similarity histograms
    Hammouda, KM
    Kamel, MS
    IEEE/WIC INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, PROCEEDINGS, 2003, : 597 - 601
  • [4] An incremental document clustering for the large document database
    Joo, KH
    Lee, WS
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2005, 3689 : 374 - 387
  • [5] Incremental Pairwise Clustering for Large Proximity Matrices
    Seo, Sambu
    Mohr, Johannes
    Li, Ningfei
    Horn, Andreas
    Obermayer, Klaus
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [6] Incremental fuzzy clustering for document categorization
    Mei, Jian-Ping
    Wang, Yangtao
    Chen, Lihui
    Miao, Chunyan
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1518 - 1525
  • [7] Incremental document clustering using fuzzy-based optimization strategy
    Madhulika Yarlagadda
    Gangadhara Rao Kancherla
    Srikrishna Atluri
    Evolutionary Intelligence, 2020, 13 : 497 - 510
  • [8] Incremental document clustering using fuzzy-based optimization strategy
    Yarlagadda, Madhulika
    Kancherla, Gangadhara Rao
    Atluri, Srikrishna
    EVOLUTIONARY INTELLIGENCE, 2020, 13 (03) : 497 - 510
  • [9] Pairwise-adaptive dissimilarity measure for document clustering
    D'hondt, Joris
    Vertommen, Joris
    Verhaegen, Paul-Armand
    Cattrysse, Dirk
    Duflou, Joost R.
    INFORMATION SCIENCES, 2010, 180 (12) : 2341 - 2358
  • [10] Incremental Document Clustering Based on Graph Model
    Nguyen-Hoang, Tu-Anh
    Hoang, Kiem
    Bui-Thi, Danh
    Nguyen, Anh-Thy
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2009, 5678 : 569 - +