Novel Topological Phase with a Zero Berry Curvature

被引:379
|
作者
Liu, Feng [1 ]
Wakabayashi, Katsunori [1 ,2 ]
机构
[1] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Nanotechnol Sustainable Energy, Gakuen 2-1, Sanda 6691337, Japan
[2] Natl Inst Mat Sci, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
关键词
GEOMETRIC PHASE; INSULATORS;
D O I
10.1103/PhysRevLett.118.076803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
present a two-dimensional (2D) lattice model that exhibits a nontrivial topological phase in the absence of the Berry curvature. Instead, the Berry connection provides the topological nontrivial phase in the model, whose integration over the momentum space, the so-called 2D Zak phase, yields a fractional wave polarization in each direction. These fractional wave polarizations manifest themselves as degenerated edge states with opposite parities in the model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Topological photonic crystals with zero Berry curvature
    Liu, Feng
    Deng, Hai-Yao
    Wakabayashi, Katsunori
    PHYSICAL REVIEW B, 2018, 97 (03)
  • [2] Topological Edge States of Honeycomb Lattices with Zero Berry Curvature
    Liu, Feng
    Yamamoto, Minori
    Wakabayashi, Katsunori
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (12)
  • [3] Topological lattice models with constant Berry curvature
    Varjas, Daniel
    Abouelkomsan, Ahmed
    Yang, Kang
    Bergholtz, Emil J.
    SCIPOST PHYSICS, 2022, 12 (04):
  • [4] Topological aspects of the Berry phase
    Banerjee, D
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1996, 44 (04): : 323 - 370
  • [5] The Berry Phase and Topological Sectors
    Sitdikov A.S.
    Nikolaeva N.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2021, 85 (12) : 1451 - 1456
  • [6] Fractional Chern insulators in bands with zero Berry curvature
    Simon, Steven H.
    Harper, Fenner
    Read, N.
    PHYSICAL REVIEW B, 2015, 92 (19)
  • [7] A pressure-induced topological phase with large berry curvature in Pb1-xSnxTe
    Liang, Tian
    Kushwaha, Satya
    Kim, Jinwoong
    Gibson, Quinn
    Lin, Jingjing
    Kioussis, Nicholas
    Cava, Robert J.
    Ong, N. Phuan
    SCIENCE ADVANCES, 2017, 3 (05):
  • [8] Topological properties of berry's phase
    Fujikawa, K
    MODERN PHYSICS LETTERS A, 2005, 20 (05) : 335 - 343
  • [9] Berry phase and dissipation of topological singularities
    Ao, P
    Zhu, XM
    SOLITONS: PROPERTIES, DYNAMICS, INTERACTIONS, APPLICATIONS, 2000, : 1 - 9
  • [10] Berry curvature dipole senses topological transition in a moire superlattice
    Sinha, Subhajit
    Adak, Pratap Chandra
    Chakraborty, Atasi
    Das, Kamal
    Debnath, Koyendrila
    Sangani, L. D. Varma
    Watanabe, Kenji
    Taniguchi, Takashi
    Waghmare, Umesh, V
    Agarwal, Amit
    Deshmukh, Mandar M.
    NATURE PHYSICS, 2022, 18 (07) : 765 - +