On solution sensitivity of generalized relaxed cocoercive implicit quasivariational inclusions with A-monotone mappings

被引:0
|
作者
Lan, HY
Cho, YJ [1 ]
Verma, RU
机构
[1] Sichuan Univ Sci & Technol, Dept Math, Sichuan 643000, Peoples R China
[2] Gyeongsang Natl Univ, Dept Math, Chinju 660701, South Korea
[3] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
sensitive analysis; relaxed cocoercive implicit quasivariational inclusions; relaxed maximal monotone mapping; A-monotone mapping; implicit resolvent operator;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce and study a new class of parametric generalized relaxed cocoercive implicit quasivariational inclusions with A-monotone mappings. By using the parametric implicit resolvent operator technique for A-monotone, we analyze solution sensitivity for this kind of generalized relaxed cocoercive inclusions in Hilbert spaces. Our results generalize sensitivity analysis results on strongly monotone quasivariational inclusions and nonlinear implicit quasi-variational inclusions. Furthermore, relaxed cocoercivity is illustrated by some examples.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
  • [1] A-monotone nonlinear relaxed cocoercive variational inclusions
    Verma, Ram U.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (02): : 386 - 396
  • [2] Generalized implicit quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings
    Bai, MR
    Tang, YY
    Liu, YP
    APPLIED MATHEMATICS LETTERS, 1999, 12 (05) : 69 - 76
  • [3] A New System of Generalized Mixed Quasivariational Inclusions with Relaxed Cocoercive Operators and Applications
    Wan, Zhongping
    Chen, Jia-Wei
    Sun, Hai
    Yuan, Liuyang
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [4] Generalized implicit quasivariational inclusions with fuzzy set-valued mappings
    Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan, 610066, China
    Comput Math Appl, 1 (71-79):
  • [5] Algorithm of solutions for generalized nonlinear implicit quasivariational inclusions with fuzzy mappings
    胡学刚
    Journal of Chongqing University, 2006, (01) : 36 - 41
  • [6] Generalized implicit quasivariational inclusions with fuzzy set-valued mappings
    Ding, XP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (01) : 71 - 79
  • [7] A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mappings
    Ding, XP
    Park, JY
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) : 243 - 257
  • [8] Generalized nonlinear implicit quasivariational inclusions
    Ya-Ping Fang
    Nan-Jing Huang
    Jung Im Kang
    Yeol Je Cho
    Journal of Inequalities and Applications, 2005
  • [9] Generalized nonlinear implicit quasivariational inclusions
    Fang, Ya-Ping
    Huang, Nan-Jing
    Kang, Jung Im
    Cho, Yeol Je
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (03) : 261 - 275
  • [10] A generalized system of nonlinear relaxed cocoercieve variational inclusions with (A, η)-monotone mappings
    Qin, Xiaolong
    Su, Yongfu
    Kang, Shin Min
    Shang, Meijuan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (01): : 117 - 126