Rare Event Estimation for Computer Models

被引:5
|
作者
Picard, Rick
Williams, Brian
机构
[1] Statistics Group, Los Alamos National Laboratory, Los Alamos
来源
AMERICAN STATISTICIAN | 2013年 / 67卷 / 01期
关键词
Computer experiments; Gaussian process; Importance sampling; Percentile estimation; Quantile estimation; Sequential experimental design; DIAGNOSTICS;
D O I
10.1080/00031305.2012.751879
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rare events for computer models are usually impossible to address via direct methods-the conceptually straightforward approach of making millions of "ordinary" code runs to generate an adequate number of rare events simply is not an option. In Bayesian applications, the common practice of sampling from posterior distributions is inefficient for rare event estimation when some parameters are important, and corresponding normalized estimates can be seriously biased for seemingly adequate sample sizes (e.g., N = 10(6)). Rare event estimation based on adaptive importance sampling can improve computational efficiencies by orders of magnitude relative to ordinary simulation methods, greatly reducing the need for time-consuming code runs.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 50 条
  • [1] On computer-intensive simulation and estimation methods for rare-event analysis in epidemic models
    Clemencon, Stephan
    Cousien, Anthony
    Felipe, Miraine Davila
    Viet Chi Tran
    STATISTICS IN MEDICINE, 2015, 34 (28) : 3696 - 3713
  • [3] On estimation for accelerated failure time models with small or rare event survival data
    Alam, Tasneem Fatima
    Rahman, M. Shafiqur
    Bari, Wasimul
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [4] On estimation for accelerated failure time models with small or rare event survival data
    Tasneem Fatima Alam
    M. Shafiqur Rahman
    Wasimul Bari
    BMC Medical Research Methodology, 22
  • [5] Bounding rare event probabilities in computer experiments
    Auffray, Yves
    Barbillon, Pierre
    Marin, Jean-Michel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 153 - 166
  • [6] Exploration of Adaptive Sequential Sampling in the Definition of Surrogate Models for the Rare Event Estimation in Transportation Assets
    Cabanzo, Carlos
    Baron, Edward
    Vorechovsky, Miroslav
    Akiyama, Mitsuyoshi
    Lourenco, Paulo B.
    Matos, Jose C.
    20TH INTERNATIONAL PROBABILISTIC WORKSHOP, IPW 2024, 2024, 494 : 366 - 376
  • [7] Sequential Monte Carlo for rare event estimation
    F. Cérou
    P. Del Moral
    T. Furon
    A. Guyader
    Statistics and Computing, 2012, 22 : 795 - 808
  • [8] Efficient Estimation of Rare-Event Kinetics
    Trendelkamp-Schroer, Benjamin
    Noe, Frank
    PHYSICAL REVIEW X, 2016, 6 (01):
  • [9] Sequential Monte Carlo for rare event estimation
    Cerou, F.
    Del Moral, P.
    Furon, T.
    Guyader, A.
    STATISTICS AND COMPUTING, 2012, 22 (03) : 795 - 808
  • [10] The Ensemble Kalman Filter for Rare Event Estimation
    Wagner, Fabian
    Papaioannou, I
    Ullmann, E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 317 - 349