Active Learning Methods for Biophysical Parameter Estimation

被引:34
|
作者
Pasolli, Edoardo [1 ]
Melgani, Farid [1 ]
Alajlan, Naif [2 ]
Bazi, Yakoub [2 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[2] King Saud Univ, Adv Lab Intelligent Syst Res, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
来源
关键词
Active learning; biophysical parameters; chlorophyll concentration estimation; Gaussian process (GP) regression; support vector regression (SVR); SUPPORT VECTOR REGRESSION; CHLOROPHYLL CONCENTRATION; HYPERSPECTRAL DATA; SEGMENTATION; RETRIEVAL; SELECTION; MODEL;
D O I
10.1109/TGRS.2012.2187906
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we face the problem of collecting training samples for regression problems under an active learning perspective. In particular, we propose various active learning strategies specifically developed for regression approaches based on Gaussian processes (GPs) and support vector machines (SVMs). For GP regression, the first two strategies are based on the idea of adding samples that are dissimilar from the current training samples in terms of covariance measure, while the third one uses a pool of regressors in order to select the samples with the greater disagreements between the different regressors. Finally, the last strategy exploits an intrinsic GP regression outcome to pick up the most difficult and hence interesting samples to label. For SVM regression, the method based on the pool of regressors and two additional strategies based on the selection of the samples distant from the current support vectors in the kernel-induced feature space are proposed. The experimental results obtained on simulated and real data sets show that the proposed strategies exhibit a good capability to select samples that are significant for the regression process, thus opening the way to the active learning approach for remote-sensing regression problems.
引用
收藏
页码:4071 / 4084
页数:14
相关论文
共 50 条
  • [1] Optimal control methods for nonlinear parameter estimation in biophysical neuron models
    Kadakia, Nirag
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [2] Active learning for parameter estimation in Bayesian networks
    Tong, S
    Koller, D
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 647 - 653
  • [3] Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval
    Verrelst, Jochem
    Dethier, Sara
    Rivera, Juan Pablo
    Munoz-Mari, Jordi
    Camps-Valls, Gustau
    Moreno, Jose
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1012 - 1016
  • [4] POLARIMETRIC OPTIMIZATION FOR BIOPHYSICAL PARAMETER ESTIMATION
    Neumann, Maxim
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 428 - 431
  • [5] FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES
    Aksoy, Samet
    Al Shwayyat, Shouq Zuhter Hasan
    Topgul, Sule Nur
    Sertel, Elif
    Unsalan, Cem
    Salo, Jari
    Holmstrom, Anton
    Wallerman, Jorgen
    Nilsson, Mats
    Fransson, Johan E. S.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2661 - 2664
  • [6] Machine Learning Methods for In Vivo Skin Parameter Estimation
    Vyas, Saurabh
    Banerjee, Amit
    Burlina, Philippe
    2013 IEEE 26TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2013, : 524 - 525
  • [7] BIOPHYSICAL PARAMETER ESTIMATION WITH ADAPTIVE GAUSSIAN PROCESSES
    Camps-Valls, G.
    Gomez-Chova, L.
    Munoz-Mari, I.
    Vila-Frances, J.
    Amoros, J.
    del Valle-Tascon, S.
    Calpe-Maravilla, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2449 - +
  • [8] Polarimetric Backscatter Optimization for Biophysical Parameter Estimation
    Neumann, Maxim
    Saatchi, Sassan S.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 254 - 258
  • [9] Semisupervised Gaussian Process Regression for Biophysical Parameter Estimation
    Bazi, Yakoub
    Melgani, Farid
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4248 - 4251
  • [10] Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings
    Huys, Quentin J. M.
    Paninski, Liam
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (05)