SMOTEBoost for Regression: Improving the Prediction of Extreme Values

被引:25
|
作者
Moniz, Nuno [1 ]
Ribeiro, Rita P. [1 ]
Cerqueira, Vitor [1 ]
Chawla, Nitesh [2 ]
机构
[1] Univ Porto, INESC TEC, Porto, Portugal
[2] Univ Notre Dame, Indiana, PA USA
关键词
Imbalanced Domain Learning; Ensemble Learning; Boosting; Regression;
D O I
10.1109/DSAA.2018.00025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Supervised learning with imbalanced domains is one of the biggest challenges in machine learning. Such tasks differ from standard learning tasks by assuming a skewed distribution of target variables, and user domain preference towards under-represented cases. Most research has focused on imbalanced classification tasks, where a wide range of solutions has been tested. Still, little work has been done concerning imbalanced regression tasks. In this paper, we propose an adaptation of the SMOTEBoost approach for the problem of imbalanced regression. Originally designed for classification tasks, it combines boosting methods and the SMOTE resampling strategy. We present four variants of SMOTEBoost and provide an experimental evaluation using 30 datasets with an extensive analysis of results in order to assess the ability of SMOTEBoost methods in predicting extreme target values, and their predictive trade-off concerning baseline boosting methods. SMOTEBoost is publicly available in a software package.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
  • [1] SMOTEBoost: Improving prediction of the minority class in boosting
    Chawla, NV
    Lazarevic, A
    Hall, LO
    Bowyer, KW
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2003, PROCEEDINGS, 2003, 2838 : 107 - 119
  • [2] Sparse regression for extreme values
    Chang, Andersen
    Wang, Minjie
    Allen, Genevera, I
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5995 - 6035
  • [3] A hierarchical classification/regression algorithm for improving extreme wind speed events prediction
    Pelaez-Rodriguez, C.
    Perez-Aracil, J.
    Fister, D.
    Prieto-Godino, L.
    Deo, R. C.
    Salcedo-Sanz, S.
    RENEWABLE ENERGY, 2022, 201 : 157 - 178
  • [4] IMPROVING EXTREME VALUE PREDICTION FOR WATER CLARITY USING WEIGHTED REGRESSION MODELS
    Daniels, William
    Ames, Troy
    Clark, J. Blake
    Uz, Stephanie Schollaert
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4907 - 4910
  • [5] PRO-SMOTEBoost: An adaptive SMOTEBoost probabilistic algorithm for rebalancing and improving imbalanced data classification
    Djafri, Laouni
    INFORMATION SCIENCES, 2025, 690
  • [6] Imbalanced regression and extreme value prediction
    Ribeiro, Rita P.
    Moniz, Nuno
    MACHINE LEARNING, 2020, 109 (9-10) : 1803 - 1835
  • [7] Imbalanced regression and extreme value prediction
    Rita P. Ribeiro
    Nuno Moniz
    Machine Learning, 2020, 109 : 1803 - 1835
  • [8] Regression-type analysis for multivariate extreme values
    de Carvalho, Miguel
    Kumukova, Alina
    dos Reis, Goncalo
    EXTREMES, 2022, 25 (04) : 595 - 622
  • [9] Regression-type analysis for multivariate extreme values
    Miguel de Carvalho
    Alina Kumukova
    Gonçalo dos Reis
    Extremes, 2022, 25 : 595 - 622
  • [10] Improving precipitation forecasts using extreme quantile regression
    Velthoen, Jasper
    Cai, Juan-Juan
    Jongbloed, Geurt
    Schmeits, Maurice
    EXTREMES, 2019, 22 (04) : 599 - 622