On the modal logic K plus theories

被引:0
|
作者
Heuerding, A
Schwendimann, S
机构
来源
COMPUTER SCIENCE LOGIC | 1996年 / 1092卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
K + T is the propositional modal logic K with the elements of the finite set T as additional axioms. We develop a sequent calculus that is suited for proof search in K + T and discuss methods to improve the efficiency. An implementation of the resulting decision procedure is part of the Logics Workbench LWB. Then we show that - in contrast to K, KT, S4 - there are theories T and formulas A where a counter-model must have a superpolynomial diameter in the size of T plus A. In the last part we construct an embedding of S4 in K + T.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 50 条
  • [1] Uncertainty theories by modal logic
    Resconi, G
    COMPUTATIONAL INTELLIGENCE: SOFT COMPUTING AND FUZZY-NEURO INTEGRATION WITH APPLICATIONS, 1998, 162 : 60 - 79
  • [2] Approximations of Modal Logic K
    Rabello, Guilherme de Souza
    Finger, Marcelo
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 143 : 171 - 184
  • [3] INTRODUCTORY MODAL LOGIC - KONYNDYK,K
    LOWE, EJ
    PHILOSOPHICAL BOOKS, 1987, 28 (03): : 165 - 166
  • [4] NONMONOTONIC LOGIC .2. NONMONOTONIC MODAL THEORIES
    MCDERMOTT, D
    JOURNAL OF THE ACM, 1982, 29 (01) : 33 - 57
  • [5] PARANORMAL MODAL LOGIC - PART II: K-?, K AND CLASSICAL LOGIC AND OTHER PARANORMAL MODAL SYSTEMS
    Silvestre, Ricardo S.
    LOGIC AND LOGICAL PHILOSOPHY, 2013, 22 (01) : 89 - 130
  • [6] K Modal Logic Approach to Maze Solving
    Osmankovic, Dinko
    Acimovic, Aleksandar
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 125 - 129
  • [7] THE EXTENSIONS OF THE MODAL LOGIC K5
    NAGLE, MC
    THOMASON, SK
    JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (01) : 102 - 109
  • [8] K-modal BL-logic
    Haveshki, Masoud
    Mohamadhasani, Mahboobeh
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2023, 40 (3-4) : 401 - 414
  • [9] Characterization of maximal consistent theories in modal logic S5
    Li, Bi-Jing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1551 - 1555
  • [10] Interpretations of various uncertainty theories using models of modal logic: A summary
    Resconi, G
    Klir, GJ
    Harmanec, D
    StClair, U
    FUZZY SETS AND SYSTEMS, 1996, 80 (01) : 7 - 14