Multilevel parallelism scheme in a genetic algorithm applied to cardiac models with mass-spring systems

被引:2
|
作者
Campos, Ricardo Silva [1 ]
Rocha, Bernardo Martins [1 ]
Lobosco, Marcelo [1 ]
dos Santos, Rodrigo Weber [1 ]
机构
[1] Univ Fed Juiz de Fora, Programa Posgrad Modelagem Computac, Juiz De Fora, MG, Brazil
来源
JOURNAL OF SUPERCOMPUTING | 2017年 / 73卷 / 02期
关键词
Cardiac model; Mass-spring systems; Genetic algorithm; OpenMP; ELECTRICAL-ACTIVITY; CELLULAR-AUTOMATA; BIDOMAIN MODEL;
D O I
10.1007/s11227-016-1798-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose an adaptive parallel genetic algorithm, which is able to automatically choose which loops should run in parallel in order to balance the workload sharing and the extra cost to manage threads' forks and joins. Our genetic algorithm finds parameters to our cardiac simulator based on mass-spring systems and cellular automata, in order to reproduce a cycle of contraction and relaxation of the human left ventricle. The ventricle geometry was obtained by extracting information from MRI data. Our multilevel parallelism scheme decreased the execution time up to 12 % and the GA adjusts the cardiac model so that it reproduced a cardiac cycle. The advantages and drawbacks of our method are discussed as well as its limitations.
引用
收藏
页码:609 / 623
页数:15
相关论文
共 50 条
  • [1] Multilevel parallelism scheme in a genetic algorithm applied to cardiac models with mass–spring systems
    Ricardo Silva Campos
    Bernardo Martins Rocha
    Marcelo Lobosco
    Rodrigo Weber dos Santos
    The Journal of Supercomputing, 2017, 73 : 609 - 623
  • [2] A Parallel Genetic Algorithm to Adjust a Cardiac Model Based on Cellular Automaton and Mass-Spring Systems
    Campos, Ricardo Silva
    Rocha, Bernardo Martins
    da Silva Barra, Luis Paulo
    Lobosco, Marcelo
    dos Santos, Rodrigo Weber
    PARALLEL COMPUTING TECHNOLOGIES (PACT 2015), 2015, 9251 : 149 - 163
  • [3] Mass-spring systems on the GPU
    Georgii, J
    Westermann, R
    SIMULATION MODELLING PRACTICE AND THEORY, 2005, 13 (08) : 693 - 702
  • [4] Evolutionary optimization of mass-spring models
    Voellinger, U.
    Stier, H.
    Priesnitz, J.
    Krause, F. -L.
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2009, 1 (03) : 137 - 141
  • [5] Comparative studies on mass-spring systems
    Tributsch A.
    Appel S.
    Heim M.
    Grass B.
    Koller M.
    Achs G.
    VDI Berichte, 2022, 2022 (2379): : 477 - 488
  • [6] Controlling anisotropy in mass-spring systems
    Bourguignon, D
    Cani, MP
    COMPUTER ANIMATION AND SIMULATION 2000, 2000, : 113 - 123
  • [7] Fast Simulation of Mass-Spring Systems
    Liu, Tiantian
    Bargteil, Adam W.
    O'Brien, James F.
    Kavan, Ladislav
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (06):
  • [8] Collision between mass-spring systems
    Ruan, HH
    Yu, TX
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2005, 31 (03) : 267 - 288
  • [9] Triangle propagation for mass-spring chain algorithm
    Duysak, Alpaslan
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2006, PROCEEDINGS, 2006, 4263 : 306 - 315
  • [10] Mesh topology identification for mass-spring models
    Bianchi, G
    Harders, M
    Székely, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 1, 2003, 2878 : 50 - 58