A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries

被引:105
|
作者
Chen, Yan [1 ,2 ]
Zhou, Mingyue [2 ]
Xia, Yuanhua [3 ]
Wang, Xun [2 ]
Liu, Yang [1 ]
Yao, Yuan [1 ]
Zhang, Hang [2 ]
Li, Yang [1 ]
Lu, Songtao [1 ]
Qin, Wei [4 ]
Wu, Xiaohong [1 ]
Wang, Qing [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
[3] China Acad Engn Phys, Inst Nucl Phys & Chem, Key Lab Neutron Phys, Mianyang 621999, Sichuan, Peoples R China
[4] Harbin Inst Technol, Sch Mat, Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
LITHIUM BATTERY; PRUSSIAN BLUE; HIGH-ENERGY; STABILITY; LIFEPO4; SAFE;
D O I
10.1016/j.joule.2019.06.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous redox flow batteries (ARFBs) have received considerable attention for large-scale energy storage because of their salient feature of decoupled energy storage and power generation; however, their deployment is critically constrained by low energy density and relatively high cost. Here, we report a low-cost, high-capacity ferrocyanide/ ferricyanide ([Fe(CN)(6)](4-/3-))-based electrolyte system via the redox targeting reactions with Prussian blue (Fe-4[Fe(CN)(6)](3), PB). The [Fe(CN)(6)](4-/3-)-PB electrolyte exhibits an excellent capacity retention of 99.991% per cycle and an unprecedented capacity of 61.6 Ah L-1. A Zn/[Fe(CN)(6)](3-) -PB flow cell with energy density of 97.4 Wh L-1 at 20 mA cm(-2) and a [Fe(CN)(6)](4-/3-)/Br- flow cell with PB as the sole solid material were demonstrated. The battery chemistry and associated redox targeting reactions were scrutinized with computational, neutron diffraction, and spectroscopic studies. The ultra-stable and capacity-intensive [Fe(CN)(6)](4-/3-)-PB electrolyte system presents an intriguing paradigm for advanced cost-effective large-scale energy storage.
引用
收藏
页码:2255 / 2267
页数:13
相关论文
共 50 条
  • [1] Redox targeting-based flow batteries
    Ye, Jiaye
    Xia, Lu
    Wu, Chun
    Ding, Mei
    Jia, Chuankun
    Wang, Qing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (44)
  • [2] Redox Targeting-Based Aqueous Redox Flow Lithium Battery
    Yu, Juezhi
    Fan, Li
    Yan, Ruiting
    Zhou, Mingyue
    Wang, Qing
    ACS ENERGY LETTERS, 2018, 3 (10): : 2314 - 2320
  • [3] A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
    Hollas, Aaron
    Wei, Xiaoliang
    Murugesan, Vijayakumar
    Nie, Zimin
    Li, Bin
    Reed, David
    Liu, Jun
    Sprenkle, Vincent
    Wang, Wei
    NATURE ENERGY, 2018, 3 (06): : 508 - 514
  • [4] A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
    Aaron Hollas
    Xiaoliang Wei
    Vijayakumar Murugesan
    Zimin Nie
    Bin Li
    David Reed
    Jun Liu
    Vincent Sprenkle
    Wei Wang
    Nature Energy, 2018, 3 : 508 - 514
  • [5] Redox Targeting-based Neutral Aqueous Flow Battery with High Energy Density and Low Cost
    Yan, Su
    Huang, Songpeng
    Xu, He
    Li, Liangyu
    Zou, Haitao
    Ding, Mei
    Jia, Chuankun
    Wang, Qing
    CHEMSUSCHEM, 2023, 16 (19)
  • [6] Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries
    Zu, Xihong
    Zhang, Leyuan
    Qian, Yumin
    Zhang, Changkun
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (49) : 22163 - 22170
  • [7] Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries
    Zu, Xihong
    Zhang, Leyuan
    Qian, Yumin
    Zhang, Changkun
    Yu, Guihua
    Advanced Materials, 2020, 132 (49) : 22347 - 22354
  • [8] Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries
    Huang, Shiqiang
    Zhang, Hang
    Salla, Manohar
    Zhuang, Jiahao
    Zhi, Yongfeng
    Wang, Xun
    Wang, Qing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries
    Shiqiang Huang
    Hang Zhang
    Manohar Salla
    Jiahao Zhuang
    Yongfeng Zhi
    Xun Wang
    Qing Wang
    Nature Communications, 13
  • [10] Redox Targeting-Based Vanadium Redox-Flow Battery
    Cheng, Yuanhang
    Wang, Xun
    Huang, Songpeng
    Samarakoon, Widitha
    Xi, Shibo
    Ji, Ya
    Zhang, Hang
    Zhang, Feifei
    Du, Yonghua
    Feng, Zhenxing
    Adams, Stefan
    Wang, Qing
    ACS ENERGY LETTERS, 2019, 4 (12) : 3028 - 3035