Classifying the pole of an amplitude using a deep neural network

被引:14
|
作者
Sombillo, Denny Lane B. [1 ,2 ]
Ikeda, Yoichi [3 ]
Sato, Toru [2 ]
Hosaka, Atsushi [2 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Quezon City 1101, Philippines
[2] Osaka Univ, Res Ctr Nucl Phys RCNP, Osaka 5670047, Japan
[3] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 01期
关键词
ANALYTIC PROPERTIES; S-MATRIX; SCATTERING;
D O I
10.1103/PhysRevD.102.016024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most of the exotic resonances observed in the past decade appear as a peak structure near some threshold. These near-threshold phenomena can be interpreted as genuine resonant states or enhanced threshold cusps. Apparently, there is no straightforward way of distinguishing the two structures. In this work, we employ the strength of deep feed-forward neural network in classifying objects with almost similar features. We construct a neural network model with scattering amplitude as input and the nature of a pole causing the enhancement as output. The training data is generated by an S-matrix satisfying the unitarity and analyticity requirements. Using the separable potential model, we generate a validation data set to measure the network's predictive power. We find that our trained neural network model gives high accuracy when the cutoff parameter of the validation data is within 400-800 MeV. As a final test, we use the Nijmegen partial wave and potential models for nucleon-nucleon scattering and show that the network gives the correct nature of the pole.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Classifying Milk Yield Using Deep Neural Network
    Boga, Mustafa
    Cevik, Kerim Kursat
    Burgut, Aykut
    PAKISTAN JOURNAL OF ZOOLOGY, 2020, 52 (04) : 1319 - 1325
  • [2] Classifying Emotions in Twitter Messages Using a Deep Neural Network
    da Silva, Isabela R. R.
    Lima, Ana C. E. S.
    Pasti, Rodrigo
    de Castro, Leandro N.
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2019, 801 : 283 - 290
  • [3] Classifying Near-Threshold Enhancement Using Deep Neural Network
    Sombillo, Denny Lane B.
    Ikeda, Yoichi
    Sato, Toru
    Hosaka, Atsushi
    FEW-BODY SYSTEMS, 2021, 62 (03)
  • [4] Classifying Near-Threshold Enhancement Using Deep Neural Network
    Denny Lane B. Sombillo
    Yoichi Ikeda
    Toru Sato
    Atsushi Hosaka
    Few-Body Systems, 2021, 62
  • [5] Classifying Breast Cancer Using Deep Convolutional Neural Network Method
    Rahman, Musfequa
    Deb, Kaushik
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, IW-FCV 2023, 2023, 1857 : 135 - 148
  • [6] Classifying Malware Traffic Using Images and Deep Convolutional Neural Network
    Davis Jr, R. E.
    Xu, Jingsheng
    Roy, Kaushik
    IEEE ACCESS, 2024, 12 : 58031 - 58038
  • [7] Detecting and classifying small objects in thermal imagery using a deep neural network
    Hemstrom, Fredrik
    Nasstrom, Fredrik
    Karlholm, Jorgen
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS, 2019, 11169
  • [8] Classifying Road Intersections using Transfer-Learning on a Deep Neural Network
    Baumann, Ulrich
    Huang, Yuan-Yao
    Glaeser, Claudius
    Herman, Michael
    Banzhaf, Holger
    Zoellner, J. Marius
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 683 - 690
  • [9] Automatically classifying non-functional requirements using deep neural network
    Li, Bing
    Nong, Xiuwen
    PATTERN RECOGNITION, 2022, 132
  • [10] Classifying the bacterial taxonomy with its metagenomic data using the deep neural network model
    Raman, Ramakrishnan
    Barve, Amit
    Meenakshi, R.
    Jayaseelan, G. M.
    Ganeshan, P.
    Taqui, Syed Noeman
    Almoallim, Hesham S.
    Alharbi, Sulaiman Ali
    Raghavan, S. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 7603 - 7618