Straightening Theorem for bounded Abelian groups

被引:1
|
作者
de Leo, Lorenzo [1 ]
Dikranjan, Dikran [1 ]
机构
[1] Univ Udine, Dept Math & Informat, I-33100 Udine, Italy
关键词
Bohr topology; Bounded Abelian group; Ulm-Kaplansky invariants;
D O I
10.1016/j.topol.2007.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every continuous function f with f (0) = 0 between two bounded Abelian groups G and H equipped with the Bohr topology coincides with a homomorphism when restricted to an infinite subset of the domain. This extends the main results of [K. Kunen, Bohr topology and partition theorems for vector spaces, Topology Appl. 90 (1998) 97-107, D. Dikranjan, S. Watson, A solution to van Douwen's problem on the Bohr topologies. J. Pure Appl. Algebra 163 (2001) 147-158]. Moreover, we give several applications and we answer a question of [B. Givens. K. Kunen, Chromatic numbers and Bohr topologies. Topology Appl. 131 (2) (2003) 189-202]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2158 / 2176
页数:19
相关论文
共 50 条
  • [2] ON THE INVERSE THEOREM FOR GOWERS NORMS IN ABELIAN GROUPS OF BOUNDED TORSION
    Candela, Pablo
    González-Sánchez, Diego
    Szegedy, Balázs
    arXiv, 2023,
  • [3] Straightening and bounded cohomology of hyperbolic groups
    I. Mineyev
    Geometric & Functional Analysis GAFA, 2001, 11 : 807 - 839
  • [4] Straightening and bounded cohomology of hyperbolic groups
    Mineyev, I
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) : 807 - 839
  • [5] On a characterization theorem on Abelian groups
    Feldman, Gennadiy
    Myronyuk, Margaryta
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4): : 383 - 398
  • [6] ISOMORPHISM THEOREM FOR ABELIAN GROUPS
    CUTLER, DO
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (08): : 949 - &
  • [7] AUTOMORPHISMS OF BOUNDED ABELIAN-GROUPS
    EVANS, DM
    HODGES, W
    HODKINSON, IM
    FORUM MATHEMATICUM, 1991, 3 (06) : 523 - 541
  • [8] PERFECTLY BOUNDED CLASSES OF ABELIAN GROUPS
    Keef, Patrick W.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (05)
  • [9] Duality of totally bounded Abelian groups
    Raczkowski, SU
    Trigos-Arrieta, FJ
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2001, 7 (01): : 1 - 12
  • [10] On extensions of bounded subgroups in Abelian groups
    Gabriyelyan, S. S.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (02): : 175 - 188