Person Re-Identification by Deep Learning Multi-Scale Representations

被引:300
|
作者
Chen, Yanbei [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
关键词
GLOBAL FEATURES;
D O I
10.1109/ICCVW.2017.304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing person re-identification (re-id) methods depend mostly on single-scale appearance information. This not only ignores the potentially useful explicit information of other different scales, but also loses the chance of mining the implicit correlated complementary advantages across scales. In this work, we demonstrate the benefits of learning multi-scale person appearance features using Convolutional Neural Networks (CNN) by aiming to jointly learn discriminative scale-specific features and maximise multi-scale feature fusion selections in image pyramid inputs. Specifically, we formulate a novel Deep Pyramid Feature Learning (DPFL) CNN architecture for multi-scale appearance feature fusion optimised simultaneously by concurrent per-scale re-id losses and interactive cross-scale consensus regularisation in a closed-loop design. Extensive comparative evaluations demonstrate the re-id advantages of the proposed DPFL model over a wide range of state-of-the-art re-id methods on three benchmarks Market-1501, CUHK03, and DukeMTMC-reID.
引用
收藏
页码:2590 / 2600
页数:11
相关论文
共 50 条
  • [1] Multi-scale Deep Learning Architectures for Person Re-identification
    Qian, Xuelin
    Fu, Yanwei
    Jiang, Yu-Gang
    Xiang, Tao
    Xue, Xiangyang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5409 - 5418
  • [2] Multi-scale joint learning for person re-identification
    Xie P.
    Xu X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 613 - 622
  • [3] MHDNet: A Multi-Scale Hybrid Deep Learning Model for Person Re-Identification
    Wang, Jinghui
    Wang, Jun
    ELECTRONICS, 2024, 13 (08)
  • [4] Contextual Multi-Scale Feature Learning for Person Re-Identification
    Fan, Baoyu
    Wang, Li
    Zhang, Runze
    Guo, Zhenhua
    Zhao, Yaqian
    Li, Rengang
    Gong, Weifeng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 655 - 663
  • [5] Person re-identification based on multi-scale feature learning
    Li, Yueying
    Liu, Li
    Zhu, Lei
    Zhang, Huaxiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [6] Towards multi-scale deep features learning with correlation metric for person re-identification
    Zhu, Dandan
    Zhou, Qiangqiang
    Han, Tian
    Chen, Yongqing
    Zhao, Defang
    Yang, Xiaokang
    KNOWLEDGE-BASED SYSTEMS, 2021, 213
  • [7] Attention Deep Model With Multi-Scale Deep Supervision for Person Re-Identification
    Wu, Di
    Wang, Chao
    Wu, Yong
    Wang, Qi-Cong
    Huang, De-Shuang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (01): : 70 - 78
  • [8] Multi-scale Learning for Low-resolution Person Re-identification
    Li, Xiang
    Zheng, Wei-Shi
    Wang, Xiaojuan
    Xiang, Tao
    Gong, Shaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3765 - 3773
  • [9] Multi-Scale Temporal Cues Learning for Video Person Re-Identification
    Li, Jianing
    Zhang, Shiliang
    Huang, Tiejun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4461 - 4473
  • [10] Multi-scale feature combination for person re-identification
    Huang, Bailiang
    Piao, Yan
    Zhang, Hao
    Tang, Yanfeng
    IET IMAGE PROCESSING, 2022, 16 (07) : 2001 - 2011