Maxwell's equations in Clifford calculus framework -: An overview on the development

被引:0
|
作者
Sprössig, W [1 ]
机构
[1] Freiberg Univ Min & Technol, Freiberg, Germany
来源
FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS | 2004年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quaternionic and Clifford calculus is applied on wide classes of problems in very different fields of science. The aim of our overview article is to line out the historical guidelines of electromagnetism in Clifford algebra framework. We want to introduce into the structure of low dimensional Clifford algebras and show the possibilities for the description of well-known terms in electromagnetics. Using Teodorescu transform we present an iteration procedure for solving Maxwell' s equations in isotropic homogeneous media. Assuming the so-called Drude-Born-Feodorov constitutive laws Maxwell' s equations in chiral media are formulated. Time-dependent problems are reduced to the consideration of Weyl operators and their right inverses the Teodorescu transforms. New tendencies are discussed.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 50 条
  • [1] Clifford algebras and Maxwell's equations in Lipschitz domains
    McIntosh, A
    Mitrea, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1599 - 1620
  • [2] Wavelets for the Maxwell's equations: An overview
    Amat, Sergio
    Blazquez, Pedro J.
    Busquier, Sonia
    Bermudez, Concepcion
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 555 - 565
  • [3] Fractional vector calculus and fractional Maxwell's equations
    Tarasov, Vasily E.
    ANNALS OF PHYSICS, 2008, 323 (11) : 2756 - 2778
  • [4] DIRAC AND MAXWELL EQUATIONS IN THE CLIFFORD AND SPIN-CLIFFORD BUNDLES
    RODRIGUES, WA
    DEOLIVEIRA, EC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (04) : 397 - 412
  • [5] Comment on formulating and generalizing Dirac's, Proca's, and Maxwell's equations with biquaternions or Clifford numbers
    Gsponer, A
    Hurni, JP
    FOUNDATIONS OF PHYSICS LETTERS, 2001, 14 (01) : 77 - 85
  • [6] Noncommutative geometry framework and the Feynman's proof of Maxwell equations
    Boulahoual, A
    Sedra, MB
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 5888 - 5901
  • [7] Development and application of compatible discretizations of Maxwell's equations
    White, Daniel A.
    Koning, Joseph M.
    Rieben, Robert N.
    COMPATIBLE SPATIAL DISCRETIZATIONS, 2006, 142 : 209 - +
  • [8] MAXWELL'S EQUATIONS
    Turnbull, Graham
    PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1801 - 1805
  • [9] A framework for the upscaling of the electrical conductivity in the quasi-static Maxwell's equations
    Caudillo-Mata, L. A.
    Haber, E.
    Heagy, L. J.
    Schwarzbach, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 388 - 402
  • [10] Einstein’s equations and Clifford algebra
    Patrick R. Girard
    Advances in Applied Clifford Algebras, 1999, 9 (2) : 225 - 230