Application of Faa di Bruno's formula in characterization of inverse relations

被引:14
|
作者
Chou, WS [1 ]
Hsu, LC
Shiue, PJS
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Dalian Univ Technol, Inst Math Sci, Dalian, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Faa di Bruno's formula; formal power series; inverse relations; pair of inverse identities;
D O I
10.1016/j.cam.2004.12.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a pair of inverse relations can be constructed by the suitable application of Faa di Bruno's formula for finding higher order derivatives of composite functions. Various examples illustrating the applications of inverse relations are presented. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 169
页数:19
相关论文
共 50 条
  • [1] Prehistory of Faa di Bruno's formula
    Craik, ADD
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (02): : 119 - 130
  • [2] A DISCRETE FAA DI BRUNO'S FORMULA
    Duarte, Pedro
    Torres, Maria Joana
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (02) : 72 - 83
  • [3] FAA DI BRUNO'S FORMULA AND VOLTERRA SERIES
    Clark, Daniel E.
    Houssineau, Jeremie
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 217 - 219
  • [4] Faa!di Bruno's formula, lattices, and partitions
    Encinas, LH
    del Rey, AM
    Masqué, JM
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 246 - 255
  • [5] FaA di Bruno's Formula and Modular Forms
    Meguedmi, Djohra
    Sebbar, Ahmed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (02) : 409 - 435
  • [6] Five interpretations of Faa di Bruno's formula
    Frabetti, Alessandra
    Manchon, Dominique
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 91 - 147
  • [7] The curious history of Faa di Bruno's formula
    Johnson, WP
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03): : 217 - 234
  • [8] On higher order angular derivatives - an application of Faa di Bruno's formula
    Pan, Y.
    Wang, M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (02) : 159 - 175
  • [9] The Faa di Bruno formula revisited
    Mortini, Raymond
    ELEMENTE DER MATHEMATIK, 2013, 68 (01) : 33 - 38
  • [10] Faa di Bruno's formula and spatial cluster modelling
    Clark, Daniel E.
    Houssineau, Jeremie
    SPATIAL STATISTICS, 2013, 6 : 109 - 117