Statistical inference for perturbed multiscale dynamical systems

被引:10
|
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems; DIFFUSION-APPROXIMATION; PARAMETRIC-ESTIMATION; POISSON EQUATION; VOLATILITY; ASYMPTOTICS;
D O I
10.1016/j.spa.2016.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
  • [1] Statistical inference for dynamical systems: A review
    McGoff, Kevin
    Mukherjee, Sayan
    Pillai, Natesh
    STATISTICS SURVEYS, 2015, 9 : 209 - 252
  • [2] Dynamical and Statistical Modeling of the Multiscale Magnetosphere
    Sharma, A. Surjalal
    Veeramani, Thangamani
    Chen, Jian
    Shao, Xi
    MODERN CHALLENGES IN NONLINEAR PLASMA PHYSICS: A FESTSCHRIFT HONORING THE CAREER OF DENNIS PAPADOPOULOS, 2010, 1320 : 72 - 76
  • [3] Computation with perturbed dynamical systems
    Bournez, Olivier
    Graca, Daniel S.
    Hainry, Emmanuel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (05) : 714 - 724
  • [5] Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations
    Song, Christian Y.
    Hsieh, Han-Lin
    Pesaran, Bijan
    Shanechi, Maryam M.
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [6] Probabilistic Inference for Dynamical Systems
    Davis, Sergio
    Gonzalez, Diego
    Gutierrez, Gonzalo
    ENTROPY, 2018, 20 (09)
  • [7] Bayesian inference for dynamical systems
    Roda, Weston C.
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 221 - 232
  • [8] Inference for nonlinear dynamical systems
    Ionides, E. L.
    Breto, C.
    King, A. A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) : 18438 - 18443
  • [9] Probability phenomena in perturbed dynamical systems
    Neishtadt, A
    MECHANICS OF THE 21ST CENTURY, 2005, : 241 - 261
  • [10] Statistical inference of multivariable modal stability margins of time-delay perturbed power systems
    Esquivel, P.
    Romero, G.
    Ornelas-Tellez, F.
    Reyes, E. N.
    Castaneda, Carlos E.
    Morfin, O. A.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 181