Parameter convergence for EM and MM algorithms

被引:0
|
作者
Vaida, F [1 ]
机构
[1] Univ Calif San Diego, Sch Med, Dept Family & Prevent Med, Div Biostat & Bioinformat, La Jolla, CA 92093 USA
关键词
EM; MM algorithm;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the likelihood sequence of the EM algorithm is non-decreasing and convergent (Dempster, Laird and Rubin (1977)), and that the limit points of the EM algorithm are stationary points of the likelihood (Wu (1982)): but the issue of the convergence of the EM sequence itself has not been completely settled. In this paper we close this gap and show that under general, simple, verifiable conditions, any EM sequence is convergent. In pathological cases we show that the sequence is cycling in the limit among a finite number of stationary points with equal likelihood. The results apply equally to the optimization transfer class of algorithms (MM algorithm) of Lange, Hunter, and Yang (2000). Two different EM algorithms constructed on the same dataset illustrate the convergence and the cyclic behavior.
引用
收藏
页码:831 / 840
页数:10
相关论文
共 50 条
  • [1] On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures
    Yu, Jian
    Chaomurilige, Chaomu
    Yang, Miin-Shen
    PATTERN RECOGNITION, 2018, 77 : 188 - 203
  • [2] Convergence properties of the EM algorithm in constrained parameter spaces
    Nettleton, D
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03): : 639 - 648
  • [3] GMM Parameter Estimation by Means of EM and Genetic Algorithms
    Zablotskiy, Sergey
    Pitakrat, Teerat
    Zablotskaya, Kseniya
    Minker, Wolfgang
    HUMAN-COMPUTER INTERACTION: DESIGN AND DEVELOPMENT APPROACHES, PT I, 2011, 6761 : 527 - 536
  • [4] Comparative convergence analysis of EM and SAGE algorithms in DOA estimation
    Chung, PJ
    Böhme, JF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) : 2940 - 2949
  • [5] Sufficient conditions for ergodicity and convergence of MH, SA, and EM algorithms
    Dorea, CCY
    Neto, DSBM
    Pereira, AGC
    STOCHASTIC MODELS, 2004, 20 (02) : 193 - 204
  • [6] CONVERGENCE OF EM IMAGE-RECONSTRUCTION ALGORITHMS WITH GIBBS SMOOTHING
    LANGE, K
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1990, 9 (04) : 439 - 446
  • [7] Comparative convergence analysis of EM and SAGE algorithms in DOA estimation
    Chung, PJ
    Böhme, JF
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 2993 - 2996
  • [8] Parameter estimation for grouped data using EM and MCEM algorithms
    AghahosseinaliShirazi, Zahra
    da Silva, Joao Pedro A. R.
    de Souza, Camila P. E.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3616 - 3637
  • [9] Parameter domain pruning for improving convergence of synthesis algorithms
    Tang, H
    Doboli, A
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1282 - 1285
  • [10] CONVERGENCE IN NORM FOR ALTERNATING EXPECTATION-MAXIMIZATION (EM) TYPE ALGORITHMS
    HERO, AO
    FESSLER, JA
    STATISTICA SINICA, 1995, 5 (01) : 41 - 54