Infinite Rings with Planar Zero-Divisor Graphs

被引:2
|
作者
Yao, Yongwei [1 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会;
关键词
Planar; Zero-divisor graphs;
D O I
10.1080/00927870802174686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any commutative ring R that is not a domain, there is a zero-divisor graph, denoted (R), in which the vertices are the nonzero zero-divisors of R and two distinct vertices x and y are joined by an edge exactly when xy=0. Smith (2007) characterized the graph structure of (R) provided it is infinite and planar. In this article, we give a ring-theoretic characterization of R such that (R) is infinite and planar.
引用
收藏
页码:4068 / 4077
页数:10
相关论文
共 50 条
  • [1] Infinite planar zero-divisor graphs
    Smith, Neal O.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) : 171 - 180
  • [2] NILPOTENT FINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS
    KuZ'Mina, A. S.
    Maltsev, Yu. N.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (04) : 565 - 574
  • [3] Planar zero-divisor graphs
    Belshoff, Richard
    Chapman, Jeremy
    JOURNAL OF ALGEBRA, 2007, 316 (01) : 471 - 480
  • [4] Description of finite nonnilpotent rings with planar zero-divisor graphs
    Kuzmina, A. S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2009, 19 (06): : 601 - 617
  • [5] On Nilpotent Finite Alternative Rings with Planar Zero-Divisor Graphs
    Kuzmina, A. S.
    ALGEBRA COLLOQUIUM, 2016, 23 (04) : 657 - 661
  • [6] On zero-divisor graphs of infinite posets
    Halaš, Radomír
    Pócs, Jozef
    Soft Computing, 2024, 28 (20) : 12113 - 12118
  • [7] ON ZERO-DIVISOR GRAPHS OF BOOLEAN RINGS
    Mohammadian, Ali
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 375 - 383
  • [8] THE ZERO-DIVISOR GRAPHS OF RINGS AND SEMIRINGS
    Dolzan, David
    Oblak, Polona
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (04)
  • [9] On zero-divisor graphs of finite rings
    Akbari, S.
    Mohammadian, A.
    JOURNAL OF ALGEBRA, 2007, 314 (01) : 168 - 184
  • [10] ZERO-DIVISOR GRAPHS FOR GROUP RINGS
    Aliniaeifard, Farid
    Li, Yuanlin
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4790 - 4800