Performance of tests of association in misspecified generalized linear models

被引:3
|
作者
O'Brien, Sean M.
Kupper, Lawrence L.
Dunson, David B.
机构
[1] Duke CLin Res Inst, Dept Biostat & Bioinformat, Durham, NC 27715 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] NIEHS, Biostat Branch MD A3 03, Res Triangle Pk, NC 27709 USA
关键词
asymptotic power; degrees of freedom; generalized linear model; model misspecification; parsimony; test of association;
D O I
10.1016/j.jspi.2004.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine the effects of modelling errors, such as underfitting and overfitting, on the asymptotic power of tests of association between an explanatory variable x and an outcome in the setting of generalized linear models. The regression function for x is approximated by a polynomial or another simple function, and a chi-square statistic is used to test whether the coefficients of the approximation are simultaneously equal to zero. Adding terms to the approximation increases asymptotic power if and only if the fit of the model increases by a certain quantifiable amount. Although a high degree of freedom approximation offers robustness to the shape of the unknown regression function, a low degree of freedom approximation can yield much higher asymptotic power even when the approximation is very poor. In practice, it is useful to compute the power of competing test statistics across the range of alternatives that are plausible a priori. This approach is illustrated through an application in epidemiology. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3090 / 3100
页数:11
相关论文
共 50 条