Non-isospectral integrable couplings of Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources

被引:6
|
作者
Yu Fa-Jun [1 ]
Li Li [1 ]
机构
[1] Shenyang Normal Univ, Coll Maths & Systemat Sci, Shenyang 110034, Peoples R China
关键词
equations hierarchy; self-consistent sources; integrable couplings;
D O I
10.1088/1674-1056/17/11/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear Schrodinger equations (NLSE) with self-consistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product.
引用
收藏
页码:3965 / 3973
页数:9
相关论文
共 50 条
  • [1] Non-isospectral integrable couplings of Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources
    于发军
    李丽
    Chinese Physics B, 2008, 17 (11) : 3965 - 3973
  • [2] Bi-integrable couplings and tri-integrable couplings of the modified Ablowitz-Kaup-Newell-Segur hierarchy with self-consistent sources
    He, Baiying
    Chen, Liangyun
    Cao, Yan
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [3] Non-isospectral integrable couplings of Ablowitz-Ladik hierarchy with self-consistent sources
    Yu, Fajun
    PHYSICS LETTERS A, 2008, 372 (46) : 6909 - 6915
  • [4] SYMMETRIES OF THE ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    KISO, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) : 284 - 293
  • [5] Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Ma, Wen-Xiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [6] A non-isospectral integrable couplings of Volterra lattice hierarchy with self-consistent sources
    Yu, Fajun
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1217 - 1223
  • [7] Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Yu, Shuimeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4345 - 4356
  • [8] An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz-Kaup-Newell-Segur Scenario
    Ma, Wen-Xiu
    AXIOMS, 2024, 13 (08)
  • [9] THE SYLVESTER EQUATION AND INTEGRABLE EQUATIONS: THE ABLOWITZ-KAUP-NEWELL-SEGUR SYSTEM
    Zhao, Song-Lin
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 82 (02) : 241 - 263
  • [10] Darboux transformation for a generalized Ablowitz-Kaup-Newell-Segur hierarchy equation
    Guan, Xue
    Zhou, Qin
    Biswas, Anjan
    Alzahrani, Abdullah Kamis
    Liu, Wenjun
    PHYSICS LETTERS A, 2020, 384 (18)