Wave-number locking in spatially forced pattern-forming systems

被引:33
|
作者
Manor, R. [1 ]
Hagberg, A. [2 ]
Meron, E. [1 ,3 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Ben Gurion Univ Negev, BIDR, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel
关键词
D O I
10.1209/0295-5075/83/10005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the Swift-Hohenberg model and normal-form equations to study wave-number locking in two-dimensional systems as a result of one-dimensional spatially periodic weak forcing. The freedom of the system to respond in a direction transverse to the forcing leads to wave-number locking in a wide range of forcing wave-numbers, even for weak forcing, unlike the locking in a set of narrow Arnold tongues in one-dimensional systems. Multi-stability ranges of stripe, rectangular, and oblique patterns produce a variety of resonant patterns. The results shed new light on rehabilitation practices of banded vegetation in drylands. Copyright (c) EPLA, 2008.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Wave-number selection in pattern-forming systems
    Saxena, S.
    Kosterlitz, J. M.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [2] Competing resonances in spatially forced pattern-forming systems
    Mau, Yair
    Haim, Lev
    Hagberg, Aric
    Meron, Ehud
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [3] Wavenumber locking and pattern formation in spatially forced systems
    Manor, Rotem
    Hagberg, Aric
    Meron, Ehud
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [4] WAVE-NUMBER SELECTION AND PHASE SOLITONS IN SPATIALLY FORCED TEMPORAL MIXING LAYERS
    POULIQUEN, O
    CHOMAZ, JM
    HUERRE, P
    TABELING, P
    PHYSICAL REVIEW LETTERS, 1992, 68 (17) : 2596 - 2599
  • [5] EXPERIMENTS WITH PATTERN-FORMING SYSTEMS
    AHLERS, G
    PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) : 421 - 443
  • [6] DYNAMICS IN PATTERN-FORMING SYSTEMS
    GUO, H
    HONG, DC
    KURTZE, DA
    PHYSICAL REVIEW A, 1992, 46 (04): : 1867 - 1874
  • [7] Standing wave localized squares in pattern-forming nonequilibrium systems
    Sakaguchi, H
    Brand, HR
    JOURNAL DE PHYSIQUE II, 1997, 7 (10): : 1325 - 1330
  • [8] STABILITY OF CELLULAR WAVE STRUCTURES IN OSCILLATORY PATTERN-FORMING SYSTEMS NEAR ONSET
    MALOMED, BA
    GEDALIN, KE
    PHYSICA D-NONLINEAR PHENOMENA, 1989, 40 (01) : 33 - 41
  • [9] Global feedback control for pattern-forming systems
    Stanton, L. G.
    Golovin, A. A.
    PHYSICAL REVIEW E, 2007, 76 (03)
  • [10] Localized states in bistable pattern-forming systems
    Bortolozzo, U.
    Clerc, M. G.
    Falcon, C.
    Residori, S.
    Rojas, R.
    PHYSICAL REVIEW LETTERS, 2006, 96 (21)