Quantized gauged massless Rarita-Schwinger fields

被引:8
|
作者
Adler, Stephen L. [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 08期
基金
美国国家科学基金会;
关键词
ANOMALIES; SYSTEMS; BOSON;
D O I
10.1103/PhysRevD.92.085023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the quantization of a minimally gauged massless Rarita-Schwinger field, by both the Dirac bracket and functional integral methods. The Dirac bracket approach in the covariant radiation gauge leads to an anticommutator that has a nonsingular limit as gauge fields approach zero, is manifestly positive semidefinite, and is Lorentz invariant. The constraints also have the form needed to apply the Faddeev-Popov method for deriving a functional integral, using the same constrained Hamiltonian and inverse constraint matrix that appear in the Dirac bracket approach.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Classical gauged massless Rarita-Schwinger fields
    Adler, Stephen L.
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [2] Response of a uniformly accelerated detector to massless Rarita-Schwinger fields in vacuum
    Li, Qinglin
    Yu, Hongwei
    Zhou, Wenting
    ANNALS OF PHYSICS, 2014, 348 : 144 - 152
  • [3] ON RARITA-SCHWINGER QUANTUM FIELDS
    RASZILLIER, I
    REVUE ROUMAINE DE PHYSIQUE, 1966, 11 (05): : 443 - +
  • [4] Symmetry of massive Rarita-Schwinger fields
    Pilling, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (13): : 2715 - 2741
  • [5] A RARITA-SCHWINGER FORMALISM FOR BOSON FIELDS
    NACK, ML
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 68 (01): : 89 - +
  • [6] RARITA-SCHWINGER FIELDS IN THE KERR GEOMETRY
    DELCASTILLO, GFT
    SILVAORTIGOZA, G
    PHYSICAL REVIEW D, 1990, 42 (12): : 4082 - 4086
  • [7] Manifolds with Many Rarita-Schwinger Fields
    Baer, Christian
    Mazzeo, Rafe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (01) : 533 - 548
  • [8] Pole skipping and Rarita-Schwinger fields
    Ceplak, Nejc
    Vegh, David
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [10] COVARIANT CANONICAL QUANTIZATION OF MASSLESS RARITA-SCHWINGER FIELD
    OKAWA, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (01): : 305 - 307