On descents after maximal values in samples of discrete random variables

被引:2
|
作者
Yakubovich, Yu. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
关键词
Asymptotic approximation; Maximum; Descent;
D O I
10.1016/j.spl.2015.06.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the expected value of the descent after the first maximum in a sample of i.i.d. discrete random variables, as the sample size grows, behaves asymptotically up to vanishing terms as the expectation of the maximal value minus the expectation of a sampled random variable, provided the latter is finite. We also show that the expected value after the last maximum exhibits the same behaviour, although it is in general slightly bigger in mean. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 50 条
  • [1] Descents following maximal values in samples of geometric random variables
    Archibald, Margaret
    Blecher, Aubrey
    Brennan, Charlotte
    Knopfmacher, Arnold
    STATISTICS & PROBABILITY LETTERS, 2015, 97 : 229 - 240
  • [2] The number of descents in samples of geometric random variables
    Knopfmacher, A
    Prodinger, H
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 339 - 350
  • [3] Entropy Bounds for Discrete Random Variables via Maximal Coupling
    Sason, Igal
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7118 - 7131
  • [4] Geometric random variables: Descents following maxima
    Archibald, Margaret
    Blecher, Aubrey
    Brennan, Charlotte
    Knopfmacher, Arnold
    Prodinger, Helmut
    STATISTICS & PROBABILITY LETTERS, 2017, 124 : 140 - 147
  • [5] On the asymptotic properties of extreme values of discrete random variables
    Akbash, Kateryna
    Doronina, Natalia
    Matsak, Ivan
    STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [6] A combinatorial and probabilistic study of initial and end heights of descents in samples of geometrically distributed random variables and in permutations
    Louchard, Guy
    Prodinger, Helmut
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01): : 137 - 170
  • [7] LIMIT THEOREM FOR EXTREME VALUES OF DISCRETE RANDOM VARIABLES AND ITS APPLICATION
    Matsak, I. K.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 101 : 189 - 202
  • [8] VALUES AND BOUNDS FOR COMMON INFORMATION OF 2 DISCRETE RANDOM-VARIABLES
    WITSENHAUSEN, HS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (02) : 313 - 333
  • [9] CONVERGENCE OF PRODUCTS OF INDEPENDENT RANDOM-VARIABLES WITH VALUES IN A DISCRETE SEMIGROUP
    MUKHERJEA, A
    SUN, TC
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 46 (02): : 227 - 236
  • [10] Asymptotic Behavior of the Extreme Values of Random Variables. Discrete Case
    I. K. Matsak
    Ukrainian Mathematical Journal, 2016, 68 : 1077 - 1090