Kernel Node Embeddings

被引:0
|
作者
Celikkanat, Abdulkadir [1 ]
Malliaros, Fragkiskos D. [1 ]
机构
[1] Univ Paris Saclay, Cent Supelec & Inria Saclay, Gif Sur Yvette, France
关键词
Network representation learning; node embedding; link prediction; node classification; kernel functions;
D O I
10.1109/globalsip45357.2019.8969363
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning representations of nodes in a low dimensional space is a crucial task with many interesting applications in network analysis, including link prediction and node classification. Two popular approaches for this problem include matrix factorization and random walk-based models. In this paper, we aim to bring together the best of both worlds, towards learning latent node representations. In particular, we propose a weighted matrix factorization model which encodes random walk-based information about the nodes of the graph. The main benefit of this formulation is that it allows to utilize kernel functions on the computation of the embeddings. We perform an empirical evaluation on real-world networks, showing that the proposed model outperforms baseline node embedding algorithms in two downstream machine learning tasks.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Subspace Embeddings for the Polynomial Kernel
    Avron, Haim
    Nguyen, Huy L.
    Woodruff, David P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] Nystrom Kernel Mean Embeddings
    Chatalic, Antoine
    Schreuder, Nicolas
    Rudi, Alessandro
    Rosasco, Lorenzo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Kernel Embeddings of Conditional Distributions
    Song, Le
    Fukumizu, Kenji
    Gretton, Arthur
    IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (04) : 98 - 111
  • [4] Towards Interpretation of Node Embeddings
    Dalmia, Ayushi
    Ganesh, J.
    Gupta, Manish
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 945 - 952
  • [5] Generalized Clustering via Kernel Embeddings
    Jegelka, Stefanie
    Gretton, Arthur
    Schoelkopf, Bernhard
    Sriperumbudur, Bharath K.
    von Luxburg, Ulrike
    KI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5803 : 144 - +
  • [6] Reproducing kernel hilbert C∗-module and kernel mean embeddings
    Hashimoto, Yuka
    Ishikawa, Isao
    Ikeda, Masahiro
    Komura, Fuyuta
    Katsura, Takeshi
    Kawahara, Yoshinobu
    Journal of Machine Learning Research, 2021, 22
  • [7] Node embeddings in dynamic graphs
    Ferenc Béres
    Domokos M. Kelen
    Róbert Pálovics
    András A. Benczúr
    Applied Network Science, 4
  • [8] Node embeddings in dynamic graphs
    Beres, Ferenc
    Kelen, Domokos M.
    Palovics, Robert
    Benczur, Andras A.
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [9] ISOMETRIC EMBEDDINGS VIA HEAT KERNEL
    Wang, Xiaowei
    Zhu, Ke
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 99 (03) : 497 - 538
  • [10] Minimax Estimation of Kernel Mean Embeddings
    Tolstikhin, Ilya
    Sriperumbudur, Bharath K.
    Muandet, Krikamol
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18