One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions

被引:81
|
作者
Wang, Wenbo [1 ]
Kang, Yuru [1 ]
Wang, Aiqin [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, Ctr Ecomat & Green Chem, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium alginate; Granular hydrogel; In situ formation; Adsorption; Heavy metals; SWELLING BEHAVIOR; ADSORPTION; COMPOSITES; POLYACRYLAMIDE; NANOCOMPOSITE; KINETICS; CHITOSAN; RELEASE; CU2+;
D O I
10.1007/s10965-013-0101-0
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Granular alginate-based hydrogels were prepared in situ in an aqueous solution via grafting and crosslinking reactions among sodium alginate (SA), acrylic acid (AA), polyvinylpyrrolidone (PVP), and gelatin (GE). Fourier transform infrared spectra, elemental analysis, and scanning electrical microscopy revealed that AA monomers were grafted onto an SA backbone, and that PVP and GE were present in the hydrogel network as linear interpenetrating components. The grafting polymerization and crosslinking reaction between only SA and AA yielded a bulk gel, but the introduction of PVP and GE into the reaction mixture led to the formation of granular products. Electrostatic and hydrogen-bonding interactions among SA, PAA, PVP, and GE were the main driving forces for the formation of granular products. The adsorption isotherms and adsorption kinetics were evaluated for the adsorption of model heavy-metal ions on one of the hydrogels. The results indicated that the hydrogel has satisfactory adsorption capacities (3.028 mmol/g, Ni2+; 3.146 mmol/g, Cu2+; 2.911 mmol/g, Zn2+; 2.862 mmol/g, Cd2+), adsorption rates, and recovery capacities for the target metal ions. In addition, competitive adsorption results suggested that the hydrogel has a stronger affinity for Cu2+ ion than for the other ions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions
    Wenbo Wang
    Yuru Kang
    Aiqin Wang
    Journal of Polymer Research, 2013, 20
  • [2] Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water
    Zhang, Huan
    Han, Xing
    Liu, Jiayu
    Wang, Minghui
    Zhao, Ti
    Kang, Lu
    Zhong, Shuangling
    Cui, Xuejun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [3] Alginate-based nanocomposites for efficient removal of heavy metal ions
    Esmat, Mohamed
    Farghali, Ahmed A.
    Khedr, Mohamed H.
    El-Sherbiny, Ibrahim M.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 102 : 272 - 283
  • [4] Sodium alginate-based nanocomposite hydrogel membrane for removal of heavy metal ions and dyes in water
    Qiao, Jiaxian
    Chen, Ying
    Zhou, Rui
    Chen, Yiqi
    Cai, Rong
    Zhao, Tian
    Chen, Yi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 307
  • [5] One-Step Calcination of the Spent Bleaching Earth for the Efficient Removal of Heavy Metal Ions
    Tang, Jie
    Mu, Bin
    Zheng, Maosong
    Wang, Aiqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (06): : 1125 - 1135
  • [6] Removal of Fluoride Ions from Aqueous Solution in a One-Step Process
    Huang Ruihua
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2011, 15 (03): : 31 - 35
  • [7] Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions
    Zhang, Mingyue
    Song, Lihua
    Jiang, Haifeng
    Li, Shu
    Shao, Yifei
    Yang, Jiaqi
    Li, Junfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) : 3434 - 3446
  • [8] A lignin-based composite hydrogel for the removal of heavy metal ions from aqueous solution
    Ren, Hao
    Hao, Yinan
    Sheng, Jian
    Zhang, Guo
    Zheng, Jingru
    Ti, Xiaogang
    Li, Yang
    Ai, Guiling
    Wang, Shuo
    Li, Lili
    Wang, Ximing
    JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 2024, 44 (05) : 277 - 291
  • [9] Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review
    Sutirman, Zetty Azalea
    Sanagi, Mohd Marsin
    Aini, Wan Ibrahim Wan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 174 (174) : 216 - 228
  • [10] Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions
    Asadi, Safoura
    Eris, Setareh
    Azizian, Saeid
    ACS OMEGA, 2018, 3 (11): : 15140 - 15148