Quadratic estimates and functional calculi of perturbed Dirac operators

被引:81
|
作者
Axelsson, A [1 ]
Keith, S [1 ]
McIntosh, A [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词
D O I
10.1007/s00222-005-0464-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove quadratic estimates for complex perturbations of Dirac-type operators, and thereby show that such operators have a bounded functional calculus. As an application we show that spectral projections of the Hodge-Dirac operator on compact manifolds depend analytically on L-infinity changes in the metric. We also recover a unified proof of many results in the Calderon program, including the Kato square root problem and the boundedness of the Cauchy operator on Lipschitz curves and surfaces.
引用
收藏
页码:455 / 497
页数:43
相关论文
共 50 条
  • [1] Quadratic estimates and functional calculi of perturbed Dirac operators
    Andreas Axelsson
    Stephen Keith
    Alan McIntosh
    Inventiones mathematicae, 2006, 163 : 455 - 497
  • [2] Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in LP
    Dorothee Frey
    Alan McIntosh
    Pierre Portal
    Journal d'Analyse Mathématique, 2018, 134 : 399 - 453
  • [3] Holomorphic functional calculi of operators, quadratic estimates and interpolation
    Auscher, P
    McIntosh, A
    Nahmod, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1997, 46 (02) : 375 - 403
  • [4] Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in L P
    Frey, Dorothee
    McIntosh, Alan
    Portal, Pierre
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 134 (02): : 399 - 453
  • [5] Discrete quadratic estimates and holomorphic functional calculi in Banach spaces
    Franks, E
    McIntosh, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (02) : 271 - 290
  • [6] Comparison of perturbed Dirac operators
    Fox, J
    Haskell, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (05) : 1601 - 1608
  • [7] Remarks on Functional Calculus for Perturbed First-order Dirac Operators
    Auscher, Pascal
    Stahlhut, Sebastian
    OPERATOR THEORY IN HARMONIC AND NON-COMMUTATIVE ANALYSIS, 2014, 240 : 31 - 43
  • [8] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang KANG
    Zhi Qi CHEN
    Acta Mathematica Sinica,English Series, 2021, (08) : 1229 - 1253
  • [9] Dirac Operators on Quadratic Lie Superalgebras
    Kang, Yi Fang
    Chen, Zhi Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1229 - 1253
  • [10] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang Kang
    Zhi Qi Chen
    Acta Mathematica Sinica, English Series, 2021, 37 : 1229 - 1253