Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production

被引:81
|
作者
Sun, Shaodong [1 ]
Li, Jia [1 ]
Cui, Jie [1 ]
Gou, Xufeng [1 ]
Yang, Qing [1 ]
Jiang, Yihui [1 ]
Liang, Shuhua [1 ]
Yang, Zhimao [2 ]
机构
[1] Xian Univ Technol, Sch Mat Sci & Engn, Shaanxi Prov Key Lab Elect Mat & Infiltrat Techno, Xian 710048, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Sch Sci, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
基金
美国国家科学基金会; 国家高技术研究发展计划(863计划);
关键词
Graphitic carbon nitride; K-doping; Exfoliation; Nanosheet; Photocatalytic hydrogen evolution; OXYGEN-DOPED G-C3N4; SOLAR HYDROGEN; NANOSHEETS; EVOLUTION; ABSORPTION; SYNTHESIZE; CATALYSTS; C3N4;
D O I
10.1016/j.ijhydene.2018.11.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doping and exfoliation are effective strategies to improve the photocatalytic activity of bulk graphitic carbon nitride (g-C3N4). Therefore, it can be inferred that engineering element-doping and exfoliation into g-C3N4 would further enhance the photocatalytic performance. Herein, we demonstrated a KOH-assisted hydrothermal-reformed melamine strategy for achieving the simultaneous K-doping and exfoliation of g-C3N4. The as synthesized K-doped g-C3N4 ultrathin nanosheets displayed much enhanced photo catalytic hydrogen evolution rate (HER) of about 13.1 times higher than that of the bulk g-C3N4 under visible-light irradiation, achieving an apparent quantum efficiency of 6.98% at 420 nm. The improved photocatalytic HER can be attributed to the high surface area offering numerous photocatalytic active sites, enlarged conductive band edge optimizing photoreduction potential, and K-doping promoting charge generation and separation as well as the long life-time of photogenerated carriers. This work would provide a promising way to integrate co-doping and exfoliation into new g-C3N4-based materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条
  • [1] Graphitic Carbon Nitride (g-C3N4) in Photocatalytic Hydrogen Production: Critical Overview and Recent Advances
    Kyriakos, Periklis
    Hristoforou, Evangelos
    Belessiotis, George V.
    ENERGIES, 2024, 17 (13)
  • [2] Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution
    Gao, Rui-Han
    Ge, Qingmei
    Jiang, Nan
    Cong, Hang
    Liu, Mao
    Zhang, Yun-Qian
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [3] Effects of K-doping on the microstructure and photocatalytic performance of porous g-C3N4 nanosheets
    Du, Zhenxi
    An, Wenxiang
    Luo, Shenghao
    Chen, Shuoyu
    Fu, Yuechun
    He, Huan
    Shen, Xiaoming
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (25) : 11986 - 11995
  • [4] CaH2-assisted structural engineering of porous defective graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen evolution
    Tang, Lina
    Chen, Zhou
    Chen, Gui
    Zuo, Fan
    Hua, Bin
    Zhang, Lizhong
    Li, Jianhui
    Sun, Yifei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 18937 - 18945
  • [5] Thermal Exfoliation and Phosphorus Doping in Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Chen, Lu
    Zhang, Linzhu
    Xia, Yuzhou
    Huang, Renkun
    Liang, Ruowen
    Yan, Guiyang
    Wang, Xuxu
    MOLECULES, 2024, 29 (15):
  • [6] Photocatalytic and antimicrobial activity studies of graphitic carbon nitride (g-C3N4)
    Hunter, Necia M.
    Thurston, John H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [7] Adsorption and photocatalytic activity of biochar with graphitic carbon nitride (g-C3N4)
    Jeon, Pilyong
    Lee, Myeong-Eun
    Baek, Kitae
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 77 : 244 - 249
  • [8] Exploring the production and storage of hydrogen energy using graphitic carbon nitride (g-C3N4)
    Elemike, Elias Emeka
    Onunkwo, Innocent Chukwujekwu
    Ididama, Oghenenyerhovwo Emegboro
    Okorodudu, Oghenetega Emmanuel
    Okogbenin, Ifeanyichukwu Paulina
    Egbele, Orhorhom Regina
    Hitler, Louis
    Anwani, Samuel Egwu
    Udowa, Omotekoro Emily
    Ushurhe, Zainab Ochanya
    Awikpe-Harrison, Harriet
    Muazu, Ibrahim
    Aziza, Andrew E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 212 - 232
  • [9] Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review
    Yan, Yachao
    Meng, Qing
    Tian, Long
    Cai, Yulong
    Zhang, Yujuan
    Chen, Yingzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [10] Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies
    Gong, Yuyang
    Xu, Zhengdong
    Wu, Jiao
    Zhong, Junbo
    Ma, Dongmei
    APPLIED SURFACE SCIENCE, 2024, 657